首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of the (Na,K)ATPase by calcium was investigated in plasma membrane preparations of rat axolemma, skeletal muscle and kidney outer medulla. Ouabain titration curves demonstrated that physiological calcium (0.08-5 microM) inhibited mainly the high affinity alpha 2 isomer. In axolemma all the (Na,K)ATPase had high ouabain affinity and calcium inhibited 40-50% of the activity with a Ki of 1.9 +/- 0.9 x 10(-7) M. In skeletal muscle high and low ouabain affinity components were present in equal amounts and calcium inhibited only the high affinity component with a Ki of 1.3 +/- 0.3 x 10(-7) M. Kidney enzyme had a low affinity for ouabain and showed very little sensitivity to calcium in the physiological range. It was demonstrated that high calcium levels inhibit the enzyme in a general sense, irrespective of the isomer, with a Ki of 6.5 +/- 6 x 10(-4) M for the kidney and 5.9 +/- 4 x 10(-4) M for the axolemma enzymes. In axolemma, enzyme activity was studied as a function of sodium concentration. Physiological calcium reduced Vmax while not significantly changing K 0.5 for sodium binding.  相似文献   

2.
The sensitized effect of prestimulation with 16.7 mM glucose on insulin release with a slow-rise glucose stimulation from the perifused rat islets of Langerhans was studied, together with the kinetic analysis of insulin release, and the interrelationship between the prestimulation time and the maximal rate of insulin release. All dose-response relationships which were derived from the dynamics of insulin release from islets prestimulated over various time periods within 60 min, showed sigmoidal profiles. Kinetic analyses were performed with Lineweaver-Burk's and Hill's equations. The 30-min prestimulation significantly reduced Hill's constant (n) from 6.2 +/- 0.7 of the control to 3.7 +/- 0.6 (p less than 0.05) and also enhanced the logarithmic equilibrium constant (log K) from -5.4 +/- 0.6 mM-n to -3.7 +/- 0.6 mM-n (p less than 0.05). However, the Km value was almost the same as that of the control (7.3 +/- 0.5 mM). On the other hand, the 60-min prestimulation remarkably diminished the Km value and the maximal rate of insulin release to 5.3 +/- 0.4 mM (p less than 0.05) and 0.6 +/- 0.08 muU/ml/islet/min (p less than 0.005), respectively. The maximal rate of insulin release linearly increased in proportion to the prestimulation time within 30 min. In conclusion, these results suggested that there would be some regularity depending on the prestimulation time in the process of transmission of the insulin-releasing signal in the pancreatic B cell and the accumulation of insulin into the provisional pool such as the labile insulin.  相似文献   

3.
Voltage-gated sodium channels maintain the electrical cadence and stability of neurons and muscle cells by selectively controlling the transmembrane passage of their namesake ion. The degree to which these channels contribute to cellular excitability can be managed therapeutically or fine-tuned by endogenous ligands. Intracellular calcium, for instance, modulates sodium channel inactivation, the process by which sodium conductance is negatively regulated. We explored the molecular basis for this effect by investigating the interaction between the ubiquitous calcium binding protein calmodulin (CaM) and the putative sodium channel inactivation gate composed of the cytosolic linker between homologous channel domains III and IV (DIII-IV). Experiments using isothermal titration calorimetry show that CaM binds to a novel double tyrosine motif in the center of the DIII-IV linker in a calcium-dependent manner, N-terminal to a region previously reported to be a CaM binding site. An alanine scan of aromatic residues in recombinant DIII-DIV linker peptides shows that whereas multiple side chains contribute to CaM binding, two tyrosines (Tyr1494 and Tyr1495) play a crucial role in binding the CaM C-lobe. The functional relevance of these observations was then ascertained through electrophysiological measurement of sodium channel inactivation gating in the presence and absence of calcium. Experiments on patch-clamped transfected tsA201 cells show that only the Y1494A mutation of the five sites tested renders sodium channel steady-state inactivation insensitive to cytosolic calcium. The results demonstrate that calcium-dependent calmodulin binding to the sodium channel inactivation gate double tyrosine motif is required for calcium regulation of the cardiac sodium channel.  相似文献   

4.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

5.
The insulin-stimulated cation channel previously identified in patch-clamped muscle preparations is here shown to be responsible for bulk Na+ entry into the cell. The mainly Na+ current of the channel was shown to be accompanied by an inhibitory Ca2+ component responsible for oscillations. Here, using quantitative fluorescence imaging of Fura-2- and SBFI-loaded soleus muscle, we measure changes in [Na+]i and [Ca2+]i related to channel function. Insulin increased [Na+]i and [Ca+]i in a transient spike of < 1-min duration. There was a momentary dip in [Na+]i related to inhibition of the channel by the Ca2+ spike, and changes in external Ca2+ were shown to alter [Na+]i via the cation channel, all effects being blocked by the specific channel inhibitor mu-conotoxin, but not by tetrodotoxin. The [Ca2+]i spike could also be induced by 8-bromo cyclic-guanosine 5'-monophosphate, an analogue of the channel-activator cyclic-guanosine 5'-monophosphate (cGMP). In addition it was noted that insulin reduced the [Ca2+]i rise upon subsequent muscle depolarization by a factor of 3.5. Insulin could be substituted with phorbol ester for the same effect and HA1004, a protein kinase inhibitor, blocked the reduction.  相似文献   

6.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The subcellular distribution and properties of rat hypothalamic progesterone 5 alpha-reductase, which accelerates the conversion of progesterone to 5 alpha-pregnane-3,20-dione, have been investigated by utilizing 3H-labeled substrate and a reverse isotopic dilution assay system. The enxymic activity was associated primarily with a cell debris-membranes fraction deribed from the 100 x g pellet. This fraction contained mainly membrane-like particulates and was free of nuclei. Little or no activity was associated with the purified nuclei. The hypothalamic 5 alpha-reductase was stimulated by NADPH but not by NADH. The reaction proceeded optimally over a pH range of 6.0 to 7.2 and at a temperaturhe substrate specificity of the enzyme for other delta 4-3-ketosteroids and the ability of these steroids to inhibit the 5 alpha reduction of [1,2-3H]progesterone as well as the effect of 17 beta-estradiol were also studied. 20 alpha-hydroxypregn-4-en-3-one was more reactive that progesterone, while testosterone was the least reactive. The estimated Km for 20 alpha-hydroxypregn-4-en-3-one was 8.6 +/- 1.9 x 10(-7) M, and for testosterone, 1.6 +/- 1.4 x 10(-5) M. The inhibition studies indicate that 20 alpha-hydroxypregn-4-en-3-one and 17 beta-estradiol are competitive and noncompetitive inhibitors, respectively, of the 5 alpha reduction of progesterone with Ki of 6.0 +/- 3.0 x 10(-8) M for 20 alpha-hydroxypregn-4-en-3-one and Kii (intercept inhibition constant) of 2.6 +/- 0.7 x 10(-5) M and Kis (slope inhibition constant) of 3.6 +/- 0.6 x 10(-5) M for 17 beta-estradiol. Testosterone is a poor competitive inhibitor of the reaction.  相似文献   

8.
This paper describes a computer modeling study of the generation of 10 Hz oscillations in the electrical activity of guinea pig thalamic neurons in vitro. The computer model was based on experimental evidence suggesting that single thalamic neurons in guinea pig have a set of voltage- and calcium-dependent ionic conductances that is capable of generating self-sustained rhythmic oscillations. Simulation results are consistent with this hypothesis, and indicate that a model that contains dendritic calcium and calcium-dependent potassium conductances, as well as a voltage-dependent, slow sodium conductance, can indeed generate self-sustained oscillations like those seen in thalamic neurons. Moreover, simulations indicate that the occurrence of such oscillatory activity is strongly dependent on the location of the slow sodium conductance. Results predict that this slow sodium conductance is located in the dendrites.The authors express their appreciation to R. J. MacGregor for providing equations and computer programs for simulating a two-point neuronal model with active calcium-related conductances  相似文献   

9.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

10.
A calcium-activated cation-selective channel in rat cultured Schwann cells   总被引:4,自引:0,他引:4  
Calcium-activated channels, in the plasma membrane of rat cultured Schwann cells were studied in isolated 'inside-out' membrane patches. With identical (150 mM NaCl) solutions on either side of the membrane, a single channel conductance of 32 pS was calculated for inward current; the conductance was somewhat less for outward current. The channel is about equally permeable to sodium and potassium ions, but is not detectably permeable to either chloride or calcium. Under our experimental conditions the channel is activated by high (more than 10(-4) M) concentrations of calcium and is sensitive to voltage, channel activity increasing with membrane depolarization.  相似文献   

11.
Regulation of the activity of beta-glucan synthase was studied using microsomal preparations from corn coleoptiles. The specific activity as measured by the incorporation of glucose from uridine diphospho-D-[U-14C]glucose varied between 5 to 15 pmol (mg protein)-1 min-1. Calcium promoted beta-glucan synthase activity and the promotion was observed at free calcium concentrations as low as 1 micromole. Kinetic analysis of substrate-velocity curve showed an apparent Km of 1.92 x 10(-4) M for UDPG. Calcium increased the Vmax from 5.88 x 10(-7) mol liter-1 min-1 in the absence of calcium to 9.52 x 10(-7) mol liter-1 min-1 and 1.66 x 10(-6) mol liter-1 min-1 in the presence of 0.5 mM and 1 mM calcium, respectively. The Km values remained the same under these conditions. Addition of ATP further increased the activity above the calcium-promoted level. Sodium fluoride, a phosphoprotein phosphatase inhibitor, promoted glucan synthase activity indicating that phosphorylation and dephosphorylation are involved in the regulation of the enzyme activity. Increasing the concentration of sodium fluoride from 0.25 mM to 10 mM increased glucan synthase activity five-fold over the + calcium + ATP control. Phosphorylation of membrane proteins also showed a similar increase under these conditions. Calmodulin, in the presence of calcium and ATP stimulated glucan synthase activity substantially, indicating that calmodulin could be involved in the calcium-dependent phosphorylation and promotion of beta-glucan synthase activity. The role of calcium in mediating auxin action is discussed.  相似文献   

12.
Using various chromatographic procedures, 4-aminobutyrate : 2-oxoglutarate transaminase from rat brain has been purified 2400 times with respect to the initial brain homogenate. The purified protein, which has a specific activity of 10 mumol times min -1, x mg-1 gave a single band by acrylamide gel electrophoresis and isoelectric focusing. It has a molecular weight of 105000 +/- 5000 and an isoelectric point of 6.8. In the presence of 0.1% sodium dodecylsulphate, a single protein band is seen on polyacrylamide gel, corresponding to a molecular weight of 57000 +/- 5000. N-terminal analysis reveals two chains with the same N-terminal amino acid, thus the enzyme may be considered as a dimer consisting of two identical subunits. The pH optimum for enzyme activity is 8.5. Studies of the enzymic reaction show that the general mechanism is of the ping-pong bi-bi model. The Km for 2-oxoglutarate at saturating 4-aminobutyrate extrapolated to saturating 2-oxoglutarate concentration is 4 mM. 2-Oxoglutarate competitively inhibits the enzyme with respect to 4-aminobutyrate, with a Ki of 1.8 times 10(-4) M. The same phenomenon is seen for the reverse reaction where the Ki is 6.6 times 10(-4) M for succinic semi-aldehyde.  相似文献   

13.
In the present report we describe the platelet-binding characteristics of applaggin and echistatin, potent inhibitors of fibrinogen-dependent platelet aggregation derived from Agkistrodon piscivorus piscivorus and Echis carinatus snake venoms, respectively. Both molecules bound to unstimulated platelets in a specific and saturable manner. At saturation there were 37,100 +/- 3,150 (mean, +/- S.D.) molecules of applaggin and 27,200 +/- 2,816 molecules of echistatin bound/platelet, with dissociation constants (Kd) of 1.4 +/- 0.6 x 10(-7) M and 4.9 +/- 1.2 x 10(-7) M, respectively. Stimulation of platelets with ADP (10 microM) + epinephrine (2 microM) resulted in an increase in the number of molecules bound at saturation to 42,300 +/- 2,105 for applaggin and 32,185 +/- 3,180 for echistatin, with a Kd of 5.6 +/- 0.3 x 10(-8) M and 1.8 +/- 0.6 x 10(-7) M, respectively. The synthetic peptide (Arg)8-Gly-Asp-Val was a competitive antagonist of applaggin and echistatin binding to unstimulated platelets (Ki = 25 and 36 microM, respectively). Applaggin and echistatin inhibited the binding of fibrinogen to stimulated platelets in a dose-dependent manner, with an IC50 of 9 and 25 nM, respectively. In concert with inhibition of platelet aggregation, applaggin and echistatin inhibited platelet secretion and synthesis of thromboxane A2 induced by ADP, collagen, and human gamma-thrombin. The monclonal antibody, LJ-CP3, which inhibits the binding of Arg-Gly-Asp containing ligands to platelet GPIIb.IIIa, also inhibited applaggin binding to unstimulated platelets in a competitive manner (Ki = 4.5 microM). Thus, applaggin and echistatin bind to the platelet GPIIb.IIIa complex, and the Arg-Gly-Asp sequence plays a central role in mediating this interaction.  相似文献   

14.
We purified a secreted fungal laccase from filtrates of Gaeumannomyces graminis var. tritici cultures induced with copper and xylidine. The active protein had an apparent molecular mass of 190 kDa and yielded subunits with molecular masses of 60 kDa when denatured and deglycosylated. This laccase had a pI of 5.6 and an optimal pH of 4.5 with 2,6-dimethoxyphenol as its substrate. Like other, previously purified laccases, this one contained several copper atoms in each subunit, as determined by inductively coupled plasma spectroscopy. The active enzyme catalyzed the oxidation of 2, 6-dimethoxyphenol (Km = 2.6 x 10(-5) +/- 7 x 10(-6) M), catechol (Km = 2.5 x 10(-4) +/- 1 x 10(-5) M), pyrogallol (Km = 3.1 x 10(-4) +/- 4 x 10(-5) M), and guaiacol (Km = 5.1 x 10(-4) +/- 2 x 10(-5) M). In addition, the laccase catalyzed the polymerization of 1, 8-dihydroxynaphthalene, a natural fungal melanin precursor, into a high-molecular-weight melanin and catalyzed the oxidation, or decolorization, of the dye poly B-411, a lignin-like polymer. These findings indicate that this laccase may be involved in melanin polymerization in this phytopathogen's hyphae and/or in lignin depolymerization in its infected plant host.  相似文献   

15.
Sarcoplasmic reticulum (SR) membranes isolated from rabbit skeletal muscle were reconstituted into two types of giant vesicles: (1) Giant proteoliposomes prepared by freeze-thawing of a mixture of SR vesicles and sonicated phospholipid vesicles without the use of detergent. (2) Giant SR vesicles prepared by fusion of SR vesicles using poly(ethylene glycol) (PEG) as a fusogen and without the addition of exogenous lipid. These giant vesicles were patch-clamped and properties of the single voltage-dependent potassium channel in the excised patch were studied. Single-channel conductance in a symmetrical solution of 0.1 M KCl and 1 mM CaCl2 was 140.0 +/- 10 pS (n = 5) for freeze-thawed vesicles and 136.4 +/- 15 pS (n = 7) for PEG vesicles. Both types of vesicles exhibited a sub-conductance state having 55% of the fully open state conductance. The voltage-dependence of open-channel probability could be expressed in terms of thermodynamic parameters of delta Gi = 0.95 kcal/mol and z = -0.77 for freeze-thawed vesicles and delta Gi = 0.92 kcal/mol and z = -0.87 for PEG vesicles. These values correlated well with previous data obtained by fusion of native SR vesicles with a planar lipid membrane. Channel orientation was found to be conserved in both types of vesicles used in the present study.  相似文献   

16.
1. Five and four tryptophan residues in Taka-amylase A [EC 3.2.1.1] of A. oryzae (TAA) were modified with dimethyl(2-hydroxy-5-nitrobenzyl)-sulfonium bromide (K-IWS) in the absence and the presence of 15% maltose (substrate analog), respectively. Only one tryptophan residue was modified with dimethyl(2-methoxy-5-nitrobenzyl)-sulfonium bromide (K-IIWS) irrespective of the presence or absence of maltose. Kinetic parameters (molecular activity, k0, Michaelis constant, Km, and inhibitor constant, Ki) of the enzyme modified with K-IWS and K-IIWS were determined. The k0 value decreased with increase in the number of modified residues, but Km and Ki values and the type of inhibition were not altered by the modification. 2. The fluorescence quenching reaction of TAA with N-bromosuccinimide (NBS) proceeded in three phases. The second-order rate constants of the three phases were determined to be (4.3 +/- 0.5) x 10(5) M-1 . s-1, (2.1 +/- 0.3) x 10(3) M-1 . s-1 and (1.7 +/- 0.2) x 10(2) M-1 . s-1, respectively. In the presence of maltose, the first phase was further separated into two phases with rate constants of (4.6 +/- 0.6) x 10(6) M-1 . s-1 and (6.9 +/- 1.1) x 10(4) M-1 . s-1, respectively. On the basis of the results, it is estimated that five out of nine tryptophan residues are accessible to the solvent and among them, two tryptophan residues are substantially exposed: one is located in the maltose binding site near the catalytic site (its modification affects the catalytic function), and the other exists on the enzyme surface far from the active site.  相似文献   

17.
The inhibitory effect of BN 52021, a specific antagonist of platelet-activating factor (PAF) on PAF-induced activation of human polymorphonuclear granulocytes (PMNL) and on the binding of [3H]-PAF to neutrophils were examined. BN 52021 over the range of 10(-9)-10(-4) M inhibited PAF-induced degranulation and superoxide production of PMNLs in a dose-dependent manner with Kd values of 0.6 +/- 0.1 x 10(-6) M and 0.4 +/- 0.1 x 10(-6) M, respectively. BN 52021 (up to 1 mM) did not show any agonistic activity and it did not affect neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine or leukotriene B4. The Ki value of BN 52021 for the specific binding of [3H]-PAF to neutrophils was 1.3 +/- 0.5 x 10(-6) M versus a Ki of 1.1 +/- 0.3 x 10(-7) M for PAF itself. BN 52021 did not affect metabolism of PAF by PMNL. These studies indicate that BN 52021 inhibits neutrophil responses to PAF by inhibiting binding of PAF to its specific PMNL receptor.  相似文献   

18.
Purification and some properties of L-glutamate decarboxylase from human brain   总被引:17,自引:0,他引:17  
Glutamate decarboxylase (EC 4.1.1.15) from human brain has been purified 8000-fold with respect to the initial homogenate. The molecular weight of the native enzyme was found to be 140000 by electrophoresis on a polyacrylamide gradient gel slab. The presence of a single protein band (Mr 67000) on sodium dodecylsulphate/polyacrylamide gel and the existence of only one N-terminal amino acid suggest that the enzyme consists of two similar if not identical polypeptide chains. The Km of the enzyme at the optimum pH of 6.8 is about 1.3 x 10(-3) M for glutamate and 0.13 x 10(-6) M for pyridoxal phosphate. The analysis of the effects of various inhibitors of mouse brain glutamate decarboxylase on the human enzyme confirms the strong competitive inhibition caused by 3-mercaptopropionic acid (Ki = 2.7 x 10(-6) M) while the Ki values for allylglycine and chloride ion are 1.8 x 10(-2) M and 2.2 x 10(-2) M, respectively.  相似文献   

19.
A procedure for separation of the catalytic and regulatory subunits of sterol sulphate sulphohydrolase from human placenta microsomes with the use of Concanavalin A-Sepharose chromatography is presented. The Km value for the catalytic subunit with oestrone sulphate is 1.2 x 10(-5) M. The Hill coefficient value h, for the reconstituted enzyme complex is 3, the S0.5 = 0.68 x 10(-3) M and the value of Km is 0.31 x 10(-12) M. The regulatory subunit is trypsin sensitive, while the catalytic one is resistant to trypsin digestion.  相似文献   

20.
22Na influx was measured in the established muscle cell line L-6 and in primary rat skeletal muscle cultures following activation of sodium channels by veratridine and sea anemone toxin II. Inhibition of the activated channels by tetrodotoxin (TTX) was analyzed with computer-assisted fits to one- or two-site binding models. In L-6 cultures, two inhibitable sodium channel populations were resolved at all ages in culture: a TTX-sensitive (K = 0.6-5.0 X 10(-8) M) and an insensitive population (Ki = 3.3-4.9 X 10(-6) M). In primary rat muscle cultures, the sensitivity of the toxin-stimulated channels to TTX changed with time in culture. In 4-day-old cultures, a single sodium channel population was detected using TTX (Ki = 2.4 X 10(-7)M). A single population was also found in 6-day-old cultures (Ki = 5.3 X 10(-7) M). By day 7 in culture, the inhibition of 22Na influx by TTX could be resolved into two components with high- and low-affinity sites for the toxin (Ki = 1.3 X 10(-9) M and 9.6 X 10(-7) M). We conclude that a single, toxin-activated sodium channel population with low affinity for TTX exists at early stages, whereas a second, high-affinity population evolves with time in primary rat muscle cultures. The expression of a high-affinity site apparently does not require ongoing neuronal involvement and may reflect an intrinsic property of the muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号