首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 109 毫秒
1.
2.
The cry gene family, produced during the late exponential phase of growth in Bacillus thuringiensis, is a large, still-growing family of homologous genes, in which each gene encodes a protein with strong specific activity against only one or a few insect species. Extensive studies are mostly focusing on the structural and functional relationships of Cry proteins, and have revealed several residues or domains that are important for the target recognition and receptor attachment. In this study, we have employed a maximum likelihood method to detect evidence of adaptive evolution in Cry proteins, and have identified 24 positively selected residues, which are all located in Domain Ⅱ or Ⅲ. Combined with known data from mutagenesis studies, the majority of these residues, at the molecular level, contribute much to the insect specificity determination. We postulate that the potential pressures driving the diversification of Cry proteins may be in an attempt to adapt for the "arm race" between δ-endotoxins and the targeted insects, or to enlarge their target spectra, hence result in the functional divergence. The sites identified to be under positive selection would provide targets for further structural and functional analyses on Cry proteins.  相似文献   

3.
4.
Chen S  Hamm HE 《Developmental cell》2006,11(4):436-438
The DEP domain is present in a number of signaling molecules, including Regulator of G protein Signaling (RGS) proteins, and has been implicated in membrane targeting. New findings in yeast, however, demonstrate a major role for a DEP domain in mediating the interaction of an RGS protein to the C-terminal tail of a GPCR, thus placing RGS in close proximity with its substrate G protein alpha subunit.  相似文献   

5.
It has previously been shown that hemimethylated DNA from the Escherichia coli replication origin (oriC) binds with high specificity to membrane fractions isolated from disrupted cells. In this article, the membrane localization of oriC-binding activity was studied by subjecting crude membrane preparations to successive cycles of sedimentation and flotation gradient analysis. This revealed that approximately two-thirds of the membrane-associated oriC-binding activity of the cell was not associated with the outer membrane fraction as previously suggested but was recovered instead in a unique membrane fraction (OCB1) whose buoyant density and protein profile differed from those of both inner and outer membranes. The specific activity of oriC binding in OCB1 was approximately fivefold higher than the activity of the isolated outer membrane peak. It is likely that membrane fraction OCB1 includes the membrane domain responsible for the binding of hemimethylated oriC to the cell envelope in intact cells.  相似文献   

6.
The PE family of Mycobacterium tuberculosis includes 98 proteins which share a highly homologous N-terminus sequence of about 110 amino acids (PE domain). Depending on the C-terminal domain, the PE family can be divided in three subfamilies, the largest of which is the PE_PGRS with 61 members. In this study, we determined the cellular localization of three PE proteins by cell fractionation and immunoelectron microscopy by expressing chimeric epitope-tagged recombinant proteins in Mycobacterium smegmatis. We demonstrate that the PE domain of PE_PGRS33 and PE11 (a protein constituted by the only PE domain) contains the information necessary for cell wall localization, and that they can be used as N-terminal fusion partners to deliver a sufficiently long C-terminus-linked protein domain on the mycobacterial cell surface. Indeed, we demonstrate that PE_PGRS33 and Rv3097c (a lipase belonging to the PE family) are surface exposed and localize in the mycobacterial cell wall. Moreover, we found that PE_PGRS33 is easily extractable by detergents suggesting its localization in the mycobacterial outer membrane. Beyond defining the cellular localization of these proteins, and a function for their PE domains, these data open the interesting possibility to construct recombinant mycobacteria expressing heterologous antigens on their surface for vaccine purposes.  相似文献   

7.
8.
The N-terminal domain is a fragment that binds proteins and anchors topoisomerase I in the nucleolus. As a separate polypeptide, it translocates from the nucleolus to nucleoplasm upon camptothecin treatment. In this paper, we show that the translocation depends on the short fragment of the domain (residues from 1 to 67). We also present a list of proteins that specifically bind to the fragment responsible for translocation.  相似文献   

9.
OmpATb is the prototype of a new family of porins in Mycobacterium tuberculosis and Mycobacterium bovis BCG. Although the pore-forming activity of this protein has been clearly established by using recombinant protein produced in Escherichia coli, characterization of the native porin has been hampered by the scarce amount of protein present in the M. tuberculosis detergent extracts. To this aim, we have developed a protocol to overproduce and obtain high yields of OmpATb in both Mycobacterium smegmatis and M. bovis BCG. The protein could be extracted and purified from the cell wall fraction and subsequently used for analysis of the pore-forming activity in multichannel and single-channel conductance experiments. Our results indicate that OmpATb produced in mycobacteria presents an average conductance value of 1,600+/-100 pS, slightly higher than that of OmpATb produced in E. coli, suggesting the occurrence of OmpATb in a highly ordered organization within the mycobacterial cell wall. In contrast to OmpATb, a truncated form lacking the first 72 amino acids (OmpATb73-326) was essentially found in the cytosol and was not active in planar lipid bilayers. This suggested that the N-terminal domain of OmpATb could participate in targeting of OmpATb to the cell wall. This was further confirmed by analyzing M. smegmatis clones expressing a chimeric protein consisting of a fusion between the N-terminal domain of OmpATb and the E. coli PhoA reporter. The present study shows for the first time that the N terminus of OmpATb is required for targeting the porin to the cell wall and also appears to be essential for its pore-forming activity.  相似文献   

10.
PE_PGRS proteins localize in the mycobacterial cell wall and the cell wall localization of PE_PGRS33 has been shown to be attributed to its PE domain. In this study, we expressed deletion mutants of PE_PGRS30 in Mycobacterium smegmatis to characterize the role of its domains in protein localization. It was revealed that, apart from the PE domain, the C-terminal domain present in few PE_PGRS proteins carries individual cell wall localization signals. Proteinase K sensitivity assay showed that PE_PGRS30 is exposed on the mycobacterial surface through its PGRS domain. PGRS domain was also shown to be responsible for polar localization of PE_PGRS30.  相似文献   

11.
12.
K Uhland  R Ehrle  T Zander    M Ehrmann 《Journal of bacteriology》1994,176(15):4565-4571
Periplasmic domains of cytoplasmic membrane proteins require export signals for proper translocation. These signals were studied by using a MalF-alkaline phosphatase fusion in a genetic selection that allowed the isolation of mislocalization mutants. In the original construct, alkaline phosphatase is fused to the second periplasmic domain of the membrane protein, and its activity is thus confined exclusively to the periplasm. Mutants that no longer translocated alkaline phosphatase were selected by complementation of a serB mutation. A total of 11 deletions in the amino terminus were isolated, all of which spanned at least the third transmembrane segment. This domain immediately precedes the periplasmic domain to which alkaline phosphatase was fused. Our results obtained in vivo support the model that amino-terminal membrane-spanning segments are required for translocation of large periplasmic domains. In addition, we found that the inability to export the alkaline phosphatase domain could be suppressed by a mutation, prlA4, in the secretion apparatus.  相似文献   

13.
5-Lipoxygenase is the key enzyme in the formation of leukotrienes, which are potent lipid mediators of asthma pathophysiology. This enzyme translocates to the nuclear envelope in a calcium-dependent manner for leukotriene biosynthesis. Eight green fluorescent protein (GFP)-lipoxygenase constructs, representing the major human and mouse enzymes within this family, were constructed and their cDNAs transfected into human embryonic kidney 293 cells. Of these eight lipoxygenases, only the 5-lipoxygenase was clearly nuclear localized and translocated to the nuclear envelope upon stimulation with the calcium ionophore. The N-terminal "beta -barrel" domain of 5-lipoxygenase, but not the catalytic domain, was necessary and sufficient for nuclear envelope translocation. The GFP-N-terminal 5-lipoxygenase domain translocated faster than GFP-5-lipoxygenase. beta-Barrel/catalytic domain chimeras with 12- and 15-lipoxygenase indicated that only the N-terminal domain of 5-lipoxygenase could carry out this translocation function. Mutations of iron atom binding ligands (His550 or deletion of C-terminal isoleucine) that disrupt nuclear localization do not alter translocation capacity indicating distinct determinants of nuclear localization and translocation. Moreover, data show that GFP-5-lipoxygenase beta-barrel containing constructs can translocate to the nuclear membrane whether cytoplasmic or nuclear localized. Thus, the predicted beta-barrel domain of 5-lipoxygenase may function like the C2 domain within protein kinase C and cytosolic phospholipase A(2) with unique determinants that direct its localization to the nuclear envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号