首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.— Traditional models of sexual selection propose that partner choice increases both average male and average female fitness in a population. Recent theoretical and empirical work, however, has stressed that sexual conflict may be a potent broker of sexual selection. When the fitness interests of males and females diverge, a reproductive strategy that increases the fitness of one sex may decrease the fitness of the other sex. The chase-away hypothesis proposes that sexual conflict promotes sexually antagonistic, rather than mutualistic, coevolution, whereby manipulative reproductive strategies in one sex are counteracted by the evolution of resistance to such strategies in the other sex. In this paper, we consider the criteria necessary to demonstrate the chase-away hypothesis. Specifically, we review sexual conflict with particular emphasis on the chase-away hypothesis; discuss the problems associated with testing the predictions of the chase-away hypothesis and the extent to which these predictions and the predictions of traditional models of sexual selection are mutually exclusive; discuss misconceptions and mismeasures of sexual conflict; and suggest an alternative approach to demonstrate sexual conflict, measure the intensity of sexually antagonistic selection in a population, and elucidate the coevolutionary trajectories of the sexes.  相似文献   

2.
Sexual conflict over reproductive investment can lead to sexually antagonistic coevolution and reproductive isolation. It has been suggested that, unlike most models of allopatric speciation, the evolution of reproductive isolation through sexually antagonistic coevolution will occur faster in large populations as these harbour greater levels of standing genetic variation, receive larger numbers of mutations and experience more intense sexual selection. We tested this in bruchid beetle populations (Callosobruchus maculatus) by manipulating population size and standing genetic variability in replicated lines derived from founders that had been released from sexual conflict for 90 generations. We found that after 19 generations of reintroduced sexual conflict, none of our treatments had evolved significant overall reproductive isolation among replicate lines. However, as predicted, measures of reproductive isolation tended to be greater among larger populations. We discuss our methodology, arguing that reproductive isolation is best examined by performing a matrix of allopatric and sympatric crosses whereas measurement of divergence requires crosses with a tester line.  相似文献   

3.
Six sister populations of Drosophila melanogaster kept under identical environmental conditions for greater than 600 generations were reciprocally crossed to investigate the incidence of population divergence in allopatry. Population crosses directly influenced fitness, mating frequency, and sperm competition patterns. Changes in both female remating rate and the outcome of male sperm competition (P1, P2) in response to foreign males were consistent with intersexual coevolution. Moreover, seven of the 30 crosses between foreign mates resulted in significant reductions in female fitness, whereas two resulted in significant increases, compared to local matings. This tendency for foreign males to reduce female fitness may be interpreted as evidence for either sexually antagonistic coevolution or the disruption of mutualistic interactions. However, instances in which female fitness improved via cohabitation with foreign males may better reveal sexual conflict, signalling release from the cost of interacting with locally adapted males. By this metric, female reproduction in D. melanogaster is strongly constrained by local adaptation by males, a situation that would promote antagonistic coevolution between the sexes. We conclude that sexual selection can promote population differentiation in allopatry and that sexual conflict is likely to have played a role in population differentiation in this study system.  相似文献   

4.
Detecting sexual conflict and sexually antagonistic coevolution   总被引:3,自引:0,他引:3  
We begin by providing an operational definition of sexual conflict that applies to both inter- and intralocus conflict. Using this definition, we examine a series of simple coevolutionary models to elucidate fruitful approaches for detecting interlocus sexual conflict and resultant sexually antagonistic coevolution. We then use published empirical examples to illustrate the utility of these approaches. Three relevant attributes emerge. First, the dynamics of sexually antagonistic coevolution may obscure the conflict itself. Second, competing models of inter-sexual coevolution may yield similar population patterns near equilibria. Third, a variety of evolutionary forces underlying competing models may be acting simultaneously near equilibria. One main conclusion is that studies of emergent patterns in extant populations (e.g. studies of population and/or female fitness) are unlikely to allow us to distinguish among competing coevolutionary models. Instead, we need more research aimed at identifying the forces of selection acting on shared traits and sexually antagonistic traits. More specifically, we need a greater number of functional studies of female traits as well as studies of the consequences of both male and female traits for female fitness. A mix of selection and manipulative studies on these is likely the most promising route.  相似文献   

5.
Reproduction has classically been viewed as a predominantly cooperative process. However, over the last 20 years this concept has steadily yielded ground to one of continual conflict in which the interests of the sexes are typically discordant. Within this framework, males and females are seen to be locked into a perpetual arms race, each adaptation by one sex promoting the evolution of countermeasures in the other sex. However, under strict genetic monogamy, the interests of the sexes become congruent, and hence antagonistic coevolution does not occur. We subjected the fly Sepsis cynipsea, a species with conspicuous sexual conflict, to experimentally enforced monogamy or polyandry for 29 generations and evaluated the microevolutionary consequences. We found that there were longevity costs to females consistent with sexually antagonistic coevolution. However, our measure of female fitness, offspring emergence, did not differ between treatments, even though life-history characters such as fertility and fecundity did. Results are discussed in terms of costs and benefits of sexual selection and sexual conflict.  相似文献   

6.
Evolutionary conflict has been investigated at many levels of organization, from interactions between loci within a genome to the coevolution of species. Here we review evidence for intersexual ontogenetic conflict, a type of conflict that has received relatively little attention both theoretically and empirically. It is manifest during development when expression of the same allele, on average, moves one sex towards, and the other sex away from, its phenotypic optimum. We first introduce this type of conflict with an illustrative example and assess conditions for maintaining polymorphism for alleles underlying the conflict. We then summarize evidence from our own experiments with Drosophila melanogaster that show substantial genome‐wide sexually antagonistic fitness variation. Finally we discuss evidence from other organisms and some of the ramifications of widespread polymorphism for sexually antagonistic fitness variation.  相似文献   

7.
Genital morphology is informative phylogenetically and strongly selected sexually. We use a recent species-level phylogeny of nephilid spiders to synthesize phylogenetic patterns in nephilid genital evolution that document generalized conflict between male and female interests. Specifically, we test the intersexual coevolution hypothesis by defining gender-specific indices of genital complexity that summarize all relevant and phylogenetically informative traits. We then use independent contrasts to show that male and female genital complexity indices correlate significantly and positively across the phylogeny rather than among sympatric sister species, as predicted by reproductive character displacement. In effect, as females respond to selection for fecundity-driven fitness via giantism and polyandry (perhaps responding to male-biased effective sex ratios), male mechanisms evolve to monopolize females (male monogamy) via opportunistic mating, pre- and postcopulatory mate guarding, and/or plugging of female genitalia to exclude subsequent suitors. In males morphological symptoms of these phenomena range from self-mutilated genitalia to total castration. Although the results are compatible with both recently favored sexual selection hypotheses, sexually antagonistic coevolution, and cryptic female choice, the evidence of strong intersexual conflict and genitalic damage in both sexes is more easily explained as sexually antagonistic coevolution due to an evolutionary arms race.  相似文献   

8.
The contemporary dynamics of sexually antagonistic coevolution caused by sexual conflicts have seldom been investigated at the intraspecific level. We characterized natural populations of Gerris gillettei and documented significant intersexual correlations for morphological traits previously related to sexual conflict in water striders. These results strongly indicate that sexually antagonistic coevolution contributed to population differentiation and resulted in different balances of armaments between the sexes within natural populations of this species. No-choice mating experiments further revealed that both male and male-female relative arms levels influence copulation duration. However, there were no asymmetries in reproductive behaviour and fitness between sympatric and allopatric mating pairs, suggesting that differentiation by sexual conflict was not sufficient to influence the outcome of mating interactions. Altogether, these results question the relative importance of female connexival spines vs. genitalia traits in mediating pre- and post-copulatory conflict in Gerris.  相似文献   

9.
The result of population crosses on traits such as mating rate, oviposition rate and survivorship are increasingly used to distinguish between modes of coevolution between the sexes. Two key hypotheses, erected from a verbal theory of sexually antagonistic coevolution, have been the subject of several recent tests. First, statistical interactions arising in population crosses are suggested to be indicative of a complex signal/receiver system. In the case of oviposition rates, an interaction between populations (x, y and z) would be indicated by the rank order of female oviposition rates achieved by x, y and z males changing depending upon the female (x, y or z) with which they mated. Second, under sexually antagonistic coevolution females will do 'best' when mated with their own males, where best is defined by the weakest response to the signal and the highest fitness. We test these hypotheses by crossing strains generated from a formal model of sexually antagonistic coevolution. Strains differ in the strength of natural selection acting on male and female traits. In our model, we assume sexually antagonistic coevolution of a single male signal and female receptor. The female receptor is treated as a preference function where both the slope and intercept of the function can evolve. Our results suggest that neither prediction is consistently supported. Interactions are not diagnostic of complex signal-receiver systems, and even under sexually antagonistic coevolution, females may do better mating with males of strains other than their own. These results suggest a reinterpretation of several recent experiments and have important implications for developing theories of speciation when sexually antagonistic coevolution is involved.  相似文献   

10.
The emergent field of evolutionary biology that studies disparities between the evolutionary interests of alleles expressed in the two sexes, or sexual conflict, promises to offer novel insights into male-female coevolution and speciation. Our theoretical understanding of basic concepts is, however, still incomplete. In a recent perspective paper, Pizzari and Snook provided a framework for understanding sexually antagonistic coevolution and for distinguishing this process from other models of male-female coevolution and suggested an experimental protocol to test for sexually antagonistic coevolution. Here, I show that the framework is flawed, primarily because it is built upon the mistaken assumption that male and female fitness can evolve independently. Further, while the empirical strategy advocated has indeed offered important insights in the past, it does not allow unambiguous discrimination between competing hypotheses.  相似文献   

11.
Chapman T 《Current biology : CB》2006,16(17):R744-R754
Sexual conflict arises from differences in the evolutionary interests of males and females and can occur over traits related to courtship, mating and fertilisation through to parental investment. Theory shows that sexual conflict can lead to sexually antagonistic coevolution (SAC), where adaptation in one sex can lead to counter-adaptation in the other. Thus, sexual conflict can lead to evolutionary change within species. In addition, SAC can--through its effects on traits related to the probability of mating and of zygote formation--potentially lead to reproductive isolation. In this review, I discuss that, although sexual conflict is ubiquitous, the actual expression of sexual conflict leading to SAC is less frequent. The balance between the benefits and costs of the manipulation of one sex by the other, and the availability of mechanisms by which conflict is expressed, determine whether actual sexual conflict is likely to occur. New insights address the relationship between sexual conflict and conflict resolution, adaptation, sexual selection and fitness. I suggest that it will be useful to examine systematically the parallels and contrasts between sexual and other evolutionary conflicts. Understanding why some traits, but not others, are subject to evolutionary change by SAC will require data on the mechanisms of the traits involved and on the relative benefits and costs of manipulation and resistance to manipulation.  相似文献   

12.
Microevolutionary studies have demonstrated sexually antagonistic selection on sexual traits, and existing evidence supports a macroevolutionary pattern of sexually antagonistic coevolution. Two current questions are how antagonistic selection within-populations scales to divergence among populations, and to what extent intraspecific divergence matches species-level patterns. To address these questions, we conducted an intraspecific comparative study of sexual armaments and mating behaviors in a water strider (Gerris incognitus) in which male genitals grasp resistant females and female abdominal structures help ward off males. The degree of exaggeration of these armaments coevolves across species. We found a similar strong pattern of antagonistic coevolution among populations, suggesting that sexual conflict drives population differentiation in morphology. Furthermore, relative exaggeration in armaments was closely related to mating outcomes in a common environment. Interestingly, the effect of armaments on mating was mediated by population sexual size dimorphism. When females had a large size advantage, mating activity was low and independent of armaments, but when males had a relative size advantage, mating activity depended on which sex had relatively exaggerated armaments. Thus, a strong signal of sexually antagonistic coevolution is apparent even among populations. These results open opportunities to understand links between sexual arms races, ecological variation, and reproductive isolation.  相似文献   

13.
Sexual dimorphism evolves when selection favors different phenotypic optima between the sexes. Such sexually antagonistic selection creates intralocus sexual conflict when traits are genetically correlated between the sexes and have sex‐specific optima. Brown anoles are highly sexually dimorphic: Males are on average 30% longer than females and 150% heavier in our study population. Viability selection on body size is known to be sexually antagonistic, and directional selection favors large male size whereas stabilizing selection constrains females to remain small. We build on previous studies of viability selection by measuring sexually antagonistic selection using reproductive components of fitness over three generations in a natural population of brown anoles. We estimated the number of offspring produced by an individual that survived to sexual maturity (termed RSV), a measure of individual fitness that includes aspects of both individual reproductive success and offspring survival. We found directional selection on male body size, consistent with previous studies of viability selection. However, selection on female body size varied among years, and included periods of positive directional selection, quadratic stabilizing selection, and no selection. Selection acts differently in the sexes based on both survival and reproduction and sexual conflict appears to be a persistent force in this species.  相似文献   

14.
Intralocus sexual conflict (IASC) arises when fitness optima for a shared trait differ between the sexes; such conflict may help maintain genetic variation within populations. Sex‐limited expression of sexually antagonistic traits may help resolve the conflict, but the extent of this resolution remains a subject of debate. In species with alternative male reproductive tactics, unresolved conflict should manifest more in a more sexually dimorphic male phenotype. We tested this prediction in the bulb mite (Rhizoglyphus robini), a species in which aggressive fighters coexist with benign scramblers. To do this, we established replicated lines in which we increased the proportion of each of the alternative male morphs using artificial selection. After approximately 40 generations, the proportion of fighters and scramblers stabilized at >0.9 in fighter‐ and scrambler‐selected lines, respectively. We then measured several female fitness components. As predicted by IASC theory, female fecundity and longevity were lower in lines selected for fighters and higher in lines selected for scramblers. This finding indicates that sexually selected phenotypes are associated with an ontogenetic conflict that is not easily resolved. Furthermore, we suggest that IASC may be an important mechanism contributing to the maintenance of genetic variation in the expression of alternative reproductive tactics.  相似文献   

15.
Intralocus sexual conflict occurs when a trait encoded by the same genetic locus in the two sexes has different optima in males and females. Such conflict is widespread across taxa, however, the shared phenotypic traits that mediate the conflict are largely unknown. We examined whether the sex hormone, testosterone (T), that controls sexual differentiation, contributes to sexually antagonistic fitness variation in the bank vole, Myodes glareolus. We compared (opposite-sex) sibling reproductive fitness in the bank vole after creating divergent selection lines for T. This study shows that selection for T was differentially associated with son versus daughter reproductive success, causing a negative correlation in fitness between full siblings. Our results demonstrate the presence of intralocus sexual conflict for fitness in this small mammal and that sexually antagonistic selection is acting on T. We also found a negative correlation in fitness between parents and their opposite-sex progeny (e.g. father-daughter), highlighting a dilemma for females, as the indirect genetic benefits of selecting reproductively successful males (high T) are lost with daughters. We discuss mechanisms that may mitigate this disparity between progeny quality.  相似文献   

16.
The experimental evolution under different levels of sexual conflict have been used to demonstrate antagonistic coevolution in muscids, but among other taxa a similar approach has not been employed. Here, we describe the results of 37 generations of evolution under either experimentally enforced monogamy or polygamy in the bulb mite Rhizoglyphus robini. Three replicates were maintained for each treatment. Monogamy makes male and female interests congruent; thus selection is expected to decrease harmfulness of males to their partners. Our results were consistent with this prediction in that females from monogamous lines achieved lower fecundity when housed with males from polygamous lines. Fecundity of polygamous females was not affected by mating system under which their partners evolved, which suggests that they were more resistant to male-induced harm. As predicted by the antagonistic coevolution hypothesis, the decrease in harmfulness of monogamous males was accompanied by a decline in reproductive competitiveness. In contrast, female fecundity and embryonic viability, which were not expected to be correlated with male harmfulness, did not differ between monogamous and polygamous lines. None of the fitness components assayed differed between individuals obtained from crosses between parents from the same line and those obtained from crosses between parents from different lines within the same mating system. This indicates that inbreeding depression did not confound our results. However, interpretation of our results is complicated by the fact that both males and females from monogamous lines evolved smaller body size compared to individuals from polygamous lines. Although a decrease in reproductive performance of males from monogamous lines was still significant when body size was taken into account, we were not able to separate the effects of male body size and mating system in their influence on fecundity of their female partners.  相似文献   

17.
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests.  相似文献   

18.
Theory suggests that sex‐specific selection can facilitate adaptation in sexually reproducing populations. However, sexual conflict theory and recent experiments indicate that sex‐specific selection is potentially costly due to sexual antagonism: alleles harmful to one sex can accumulate within a population because they are favored in the other sex. Whether sex‐specific selection provides a net fitness benefit or cost depends, in part, on the relative frequency and strength of sexually concordant versus sexually antagonistic selection throughout a species’ genome. Here, we model the net fitness consequences of sex‐specific selection while explicitly considering both sexually concordant and sexually antagonistic selection. The model shows that, even when sexual antagonism is rare, the fitness costs that it imposes will generally overwhelm fitness benefits of sexually concordant selection. Furthermore, the cost of sexual antagonism is, at best, only partially resolved by the evolution of sex‐limited gene expression. To evaluate the key parameters of the model, we analyze an extensive dataset of sex‐specific selection gradients from wild populations, along with data from the experimental evolution literature. The model and data imply that sex‐specific selection may likely impose a net cost on sexually reproducing species, although additional research will be required to confirm this conclusion.  相似文献   

19.
Males and females share a genome and express many shared phenotypic traits, which are often selected in opposite directions. This generates intralocus sexual conflict that may constrain trait evolution by preventing the sexes from reaching their optimal phenotype. Furthermore, if present across multiple loci, intralocus sexual conflict can result in a gender load that may diminish the benefits of sexual selection and help maintain genetic variation for fitness. Despite the importance of intralocus sexual conflict, surprisingly few empirical studies conclusively demonstrate its operation. We show that the pattern of multivariate selection acting on three sexually dimorphic life-history traits (development time, body size, and longevity) in the Indian meal moth, Plodia interpunctella, is opposing for the sexes. Moreover, we combined our estimates of selection with the additive genetic variance-covariance matrix (G) to predict the evolutionary response of the life-history traits in the sexes and showed that the angle between the vector of responses and the vector of sexually antagonistic selection was almost orthogonal at 84.70°. Thus, G biases the predicted response of life-history traits in the sexes away from the direction of sexually antagonistic selection, confirming the presence of strong intralocus sexual conflict in this species. Despite this, sexual dimorphism has evolved in all of the life-history traits examined suggesting that mechanism(s) have evolved to resolve this conflict and allow the sexes to reach their life-history optima. We argue that intralocus sexual conflict is likely to play an important role in the evolution of divergent life-history strategies between the sexes in this species.  相似文献   

20.
The ubiquity of recombination in nature is a paradox because it breaks up combinations of alleles favored by natural selection. Theoretical work has shown that antagonistic coevolution between hosts and parasites can result in rapid fluctuations in epistasis that can create a short‐term advantage to recombination. Here, we show that another kind of antagonistic coevolution, interlocus sexually antagonistic coevolution (SAC), can also create indirect selection for modifiers that increase the rate of recombination, and that it can lead to very high levels of recombination at equilibrium. Recombination is favored because interlocus SAC creates heterogeneity in the strength and direction of selection, both within and between generations, which maintains an excess of disadvantageous haplotypes in the population. This result is similar to and consistent with dynamics of fluctuating epistasis produced in models of host–parasite coevolution. However, the conditions under which interlocus SAC provides an advantage to recombination are more permissive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号