首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of surfactant supplementation on the progression of lung injury in rabbits exposed to 100% O2 for 64 h and returned to room air for 24 h. At this time, rabbits not treated with surfactant exhibit a severe lung injury with hypoxemia, increased alveolar premeability to solute, decreased total lung capacity (TLC) and lung edema. For surfactant treatment, 125 mg of calf lung surfactant extract (CLSE), suspended in 6-8 ml of normal saline, were instilled intratracheally at 0 and 12 h posthyperoxic exposure. At 24 h postexposure, these CLSE-treated rabbits compared with saline controls had significantly higher amounts of lung phospolipids (34 +/- 4 vs. 4.5 +/- 0.6 mumol/kg body wt) and increased TLC (42 +/- 2 vs. 27 +/- 1 ml/kg), with significantly lower amounts of alveolar protein (36 +/- 3 vs. 56 +/- 3 mg/kg) and decreased lung wet weight-to-dry weight ratios (5.6 +/- 0.1 vs. 6.3 +/- 0.3). Surfactant supplementation also decreased the degree of lung atelectasis as reflected by the increase in arterial O2 partial pressure (PaO2) after breathing 100% O2 for 20 min (PaO2 = 460 +/- 31 vs. 197 +/- 52 Torr). These findings indicate that instillation of exogenous surfactant mitigates the progression of hyperoxic lung injury in rabbits.  相似文献   

2.
3.
4.
5.
6.
7.
Lung tissue of the white New Zealand rabbit was examined by transmission and scanning electron microscopy from the 23rd to the 30th day post conception (p.c.). The following results were obtained: 1. About day 23 p.c., when the development of capillaries increases, the "canalicular period" starts. This is followed by the "terminal sac period" characterized by the beginning of alveolarisation. On day 28 p.c. typical alveoles can be found. 2. The Pneumoplast is the stem cell of the pneumocyte type I as well as type II. They differentiate parallel in either one or the other. This stem cell of the entodermal origin has a single cilium. During the period of single cilia growth the cell is not mitotic. 3. The maturation of the lamellar body, typical of the pneumocyte type II, can be accomplished in a direct as well as in a indirect way of synthesis. Transitions between both are possible. 4. The most important factors of differentiation are collagenic induction substances beside nerval and humoral factors. Those humoral factors can be transported easier into the cells with advancing capillarisation as a result of the shortened distance of diffusion.  相似文献   

8.
9.
Pulmonary surfactant replacement has previously been shown to be effective in the human neonatal respiratory distress syndrome. The value of surfactant replacement in models of acute lung injury other than quantitative surfactant deficiency states is, however, uncertain. In this study an acute lung injury model using rats with chronic indwelling arterial catheters, injured with N-nitroso-N-methylurethane (NNNMU), has been developed. The NNNMU injury was found to produce hypoxia, increased mortality, an alveolitis, and alterations in the pulmonary surfactant system. Alterations of surfactant obtained by bronchoalveolar lavage included a reduction in the phospholipid-to-protein ratio, reduced surface activity, and alterations in the relative percentages of the individual phospholipids compared with controls. Treatment of the NNNMU-injured rats with instilled exogenous surfactant (Survanta) improved oxygenation; reduced mortality to control values; and returned the surfactant phospholipid-to-protein ratio, surface activity, and, with the exception of phosphatidylglycerol, the relative percentages of individual surfactant phospholipids to control values.  相似文献   

10.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

11.
12.
Prolonged exposure to hyperoxia can result in significant lung injury and has been associated with the development of bronchopulmonary dysplasia. Leukotrienes (LT) recruit polymorphonuclear leukocytes (PMN) to the lung, increase vascular permeability, and have therefore been postulated to play a role in the pathogenesis of hyperoxic lung injury. This study investigates ICI 198,615 (ICI), an LTD4 and LTE4 receptor antagonist in preventing hyperoxic lung injury in newborn rabbits. Matched littermates of 7-day-old rabbits received ICI (0.1 or 1.0 microM/kg/h) or vehicle alone, were exposed to greater than 95% O2, and sacrificed after 48, 72, 84 and 96 h of exposure. Bronchoalveolar alveolar lavage fluid (BAL) of the left lung was analyzed for white cell count, differential, absolute number of PMNs, total protein, and cyclooxygenase products 6-keto-PGF1 alpha, and thromboxane B2. Lung water was quantified utilizing the right lung. Results demonstrated no significant differences between the ICI groups or between the ICI groups and controls. In conclusion, the administration of the LTD4 and LTE4 receptor antagonist ICI 198,615 was insufficient to reduce the formation of pulmonary edema, reduce mortality or attenuate hyperoxic lung injury. These experiments suggest that a number of other mediators may be involved in the hyperoxic lung injury process and that the functional inhibition of a portion of the arachidonic acid cascade was not sufficient to either prevent or attenuate hyperoxic lung injury in newborn rabbits.  相似文献   

13.
14.
Three days after subcutaneous injection of N-nitroso-N-methylurethane (NNNMU) to induce lung injury, adult rabbits were mechanically ventilated and lung function was evaluated. Each animal then received either nebulized Survanta (Neb Surv), nebulized saline (Neb Saline), nebulized gas alone (Neb Gas), or tracheally instilled Survanta (Inst Surv). The ventilation efficiency index (VEI) value increased significantly compared with pretreatment values (P less than 0.01) over a 3-h treatment period for the Neb Surv animals, whereas VEI values for the other three groups decreased after treatment (P less than 0.05). Arterial PO2-to-fraction of inspired O2 ratios and dynamic compliance values significantly decreased after treatment for the Inst Surv group (P less than 0.05). Pressure-volume curves demonstrated a significantly greater volume at maximal pressure for the Neb Surv group compared with each of the other groups studied (P less than 0.01). The calculated quantity of surfactant recovered in lung tissue for the Neb Surv group was only 4.9 +/- 1.0 mg lipid/kg compared with 100 mg lipid/kg delivered to the Inst Surv group. Surfactant administered as an aerosol resulted in modest physiological improvements in this model of lung injury and was superior to the tracheal instillation technique.  相似文献   

15.
Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2+/+), heterozygous (COX-2+/-), and homozygous (COX-2-/-) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2-/- pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD.  相似文献   

16.
We previously reported that pretreatment with endotoxin significantly reduced acute pulmonary O2 toxicity in lambs (J. Appl. Physiol. 65: 1579-1585, 1988). One of endotoxin's many effects is to inhibit cytochrome P-450 mono-oxygenation reactions, which are believed to produce toxic O2 species. Therefore, one possible explanation for endotoxin's beneficial effect is that it inhibited P-450-mediated O2 radical production during hyperoxia. To test this hypothesis, we administered a single dose of cimetidine, a noncompetitive inhibitor of P-450 activity, to nine lambs before continuous exposure to greater than 95% O2. Compared with six control O2-exposed lambs, the cimetidine-treated O2-exposed lambs maintained normal gas exchange for a longer period of time (P less than 0.01), accumulated lung water at a slower rate (P less than 0.01), and had normal microvascular permeability after 72 h of O2 exposure. Postmortem levels of antioxidant enzymes in blood-free lung homogenate were not increased in cimetidine-treated lambs. However, the levels of oxidized glutathione were significantly lower in cimetidine-treated lambs, and the ratio of reduced to oxidized glutathione concentrations (GSH/GSSG ratio) was sevenfold higher than the ratio measured in control O2-exposed lambs (P less than 0.001). In four lambs, pretreatment with ranitidine (a drug chemically related to cimetidine but without P-450 inhibitory activity) had no effect either on the time course of O2 injury or on postmortem antioxidants. Microsomes were isolated from blood-free lung of all study animals and P-450 activity of the form 2 isozyme was measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
19.
Spreading of exogenous surfactant in an airway   总被引:3,自引:0,他引:3  
  相似文献   

20.
Alveolar and lung liquid clearance in anesthetized rabbits   总被引:6,自引:0,他引:6  
Alveolar and lung liquid clearance were studied over 8 h in intact anesthetized ventilated rabbits by instillation of either isosmolar Ringer lactate (2 ml/kg) or autologous plasma (2 or 3 ml/kg) into one lower lobe. The half time for lung liquid clearance of the isosmolar Ringer lactate was 3.3 h and that for plasma clearance was 6 h. In the plasma experiments, the alveolar protein concentration after 1 h was 5.2 +/- 0.8 g/dl, which was significantly greater than the initial instilled protein concentration of 4.3 +/- 0.7 g/dl (P less than 0.05). Thus alveolar protein concentration increased by 21 +/- 12% over 1 h, which matched clearance from the entire lung of 19 +/- 11% of the instilled volume. Overall the rate of alveolar and lung liquid clearance in rabbits was significantly faster than in prior studies in dogs and sheep. The fast alveolar liquid clearance rate in rabbits was not due to higher endogenous catecholamine release, because intravenous and alveolar (5 x 10(-5) M) propranolol did not slow the clearance. Also, beta-adrenergic therapy with alveolar terbutaline (10(-5) or 10(-4) M) did not increase the alveolar or lung liquid clearance rates. Phloridzin (10(-3) M) did not slow alveolar liquid clearance. However, amiloride (10(-4) M) inhibited 75% of the basal alveolar liquid clearance in rabbits, thus providing evidence that alveolar liquid clearance in rabbits depends primarily on sodium-dependent transport. This rabbit study provides further evidence for important species differences in the basal rates of alveolar liquid and solute clearance as well as the response to beta-adrenergic agonists and ion transport inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号