首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Doxorubicin (DOX) was administered intraperitoneally to rats in six equal, 2.5 mg/kg doses over a 2-week period with or without L-carnitine. Injury was monitored by echocardiography, release of myosin light chain-1 (MLC-1), and by measurement of aldehydic lipid peroxidation products. General observation revealed that DOX alone caused more ascites than DOX plus L-carnitine. Animals sacrificed 2 h after the sixth dose had significantly higher aldehyde concentrations than 2 h after a single dose of DOX. Aldehydes in plasma and heart remained elevated for 3 weeks after the final dose of DOX, whereas L-carnitine prevented or attenuated the DOX-induced increases in lipid peroxidation. The increase in MLC-1 2 h after the sixth dose of DOX was greater than after a single dose, suggesting cumulative damage. Echocardiography did not detect either early injury or the protective effects of L-carnitine. These data indicate that lipid peroxidation following DOX occurs early, and parallels the cumulative characteristics of DOX-induced cardiotoxicity. The protective effects of L-carnitine may be due to improved cardiac energy metabolism and reduced lipid peroxidation.  相似文献   

2.
Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic that has cardiotoxicity as a major side effect. One mechanism of this toxicity is believed to involve the reactive oxygen radical species (ROS); these agents likely account for the pathophysiology of DOX-induced cardiomyopathy. Aminoguanidine (AG) is an effective antioxidant and free radical scavenger which has long been known to protect against ROS formation. We investigated the effects of AG on DOX-induced changes in thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content. The rats were divided into four groups:1) Control; 2) DOX group; injected intraperitoneally (i.p.) with DOX 20 mg/kg in a single dose 3) AG-treated group; injected i.p. in single dose of 20 mg/kg DOX plus 100 mg/kg AG 1 h before the DOX for 3 days, 4) AG group; injected i.p. with AG 100 mg/kg for 3 days. DOX administration to control rats increased TBARS and decreased GSH levels. AG administration before DOX injection caused significant decrease in TBARS and increase in GSH levels in the heart tissue when compared with DOX only. Morphological changes, including severe myocardial fibrosis and inflammatory cell infiltration were clearly observed in the DOX-treated heart. AG reversed the DOX-induced heart damage. Therefore AG could protect the heart tissue against free radical injury. The application of AG during cancer chemotherapy may attenuate tissue damage and improve the therapeutic index of DOX.  相似文献   

3.
BackgroundDoxorubicin (DOX) is one of the popular anti-cancer drugs in the world and several literatures have implicated it in various toxicities especially cardiotoxicity and reproductive toxicity. Diphenyl diselenide (DPDS) is well acknowledged for its compelling pharmacological effects in numerous disease models and chemically-mediated toxicity. This study was carried out to investigate the effect of DPDS on DOX-induced changes in the reproductive indices of male Wistar rats.MethodsRats were intraperitoneally injected with 7.5 mg/kg body weight of DOX alone once followed by treatment with DPDS at 5 and 10 mg/kg for seven successive days. Excised hypothalamus, testes and epididymis were processed for biochemical and histological analyses.ResultsDPDS treatment significantly (p < 0.05) abated DOX-induced oxidative damage by decreasing the levels of oxidative stress indices such as hydrogen peroxide, reactive oxygen and nitrogen species, and lipid peroxidation with a respective improvement in the level of glutathione in the hypothalamic, testicular and epididymal tissues of DOX-treated rats. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione S-transferase and glutathione peroxidase were upregulated in the DPDS co-treated group. DPDS co-treatment alleviates the burden of DOX-induced inflammation by significant reductions in myeloperoxidase activity, levels of nitric oxide and tumor necrosis factor alpha with concomitant decline in the activity of caspase-3, an apoptotic biomarker. Consequently, significant improvement in the spermiogram, levels of reproductive hormones (follicle stimulating hormone, luteinizing hormone, prolactin, serum testosterone and intra-testicular testosterone) levels in the DPDS co-treatment group in comparison to DOX alone-treated group were observed. Histology results of the testes and epididymis showed that DPDS significantly alleviated pathological lesions induced by DOX in the animals.ConclusionDPDS may modulate reproductive toxicity associated with DOX therapy in male cancer patients.  相似文献   

4.
Doxorubicin (DOX) is a broad spectrum antitumor agent. However, its clinical utility is limited due to the well-known cardiotoxicity. Resveratrol (RSV) has been reported to exert cardioprotective effect in some cardiovascular diseases. In this study, we aimed to determine the effect of RSV on DOX-induced cardiotoxicity, and further explore the underlying mechanism in this process.Male Sprague-Dawley (SD) rats were randomly divided into four groups: CON, DOX, RSV, or DOX+RSV group (10 rats in each group). DOX treatment significantly decreased cardiac function, and increased the release of serum lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) in rat serum. Increased cell death and apoptosis of cardiomyocytes were also observed in DOX group in comparison with CON group. DOX treatment dramatically down-regulated expression of VEGF-B either in vivo or in vitro. In contrast, the combination of RSV and DOX markedly attenuated DOX-induced cardiotoxicity with the up-regulation of VEGF-B. Inhibition of VEGF-B by small interfering RNA (siRNA) abolished the protective effects of RSV on DOX-treated cardiomyocytes.Consequently,our findings indicated that RSV attenuates DOX-induced cardiotoxicity through up-regulation of VEGF-B.  相似文献   

5.
Doxorubicin (DOX) is one of the most effective chemotherapeutic drugs; however, its incidence of cardiotoxicity compromises its therapeutic index. DOX-induced heart failure is thought to be caused by reduction/oxidation cycling of DOX to generate oxidative stress and cardiomyocyte cell death. Resveratrol (RV), a stilbene found in red wine, has been reported to play a cardioprotective role in diseases associated with oxidative stress. The objective of this study was to test the ability of RV to protect against DOX-induced cardiomyocyte death. We hypothesized that RV protects cardiomyocytes from DOX-induced oxidative stress and subsequent cell death through changes in mitochondrial function. DOX induced a rapid increase in reactive oxygen species (ROS) production in cardiac cell mitochondria, which was inhibited by pretreatment with RV, most likely owing to an increase in MnSOD activity. This effect of RV caused additional polarization of the mitochondria in the absence and presence of DOX to increase mitochondrial function. RV pretreatment also prevented DOX-induced cardiomyocyte death. The protective ability of RV against DOX was abolished when Sirt1 was inhibited by nicotinamide. Our data suggest that RV protects against DOX-induced oxidative stress through changes in mitochondrial function, specifically the Sirt1 pathway leading to cardiac cell survival.  相似文献   

6.
The impact of cancer therapies on adult cardiac function is becoming a concern as more children survive their initial cancer. Cardiovascular disease is now a significant problem to adult survivors of childhood cancer. Specifically, doxorubicin (DOX) may be particularly harmful in young girls. The objective of this study was to characterize DOX damage and determine the ability of dexrazoxane (DEX) to reduce DOX-mediated cardiac damage in sedentary and swim-trained female rats. Female Sprague-Dawley rats were left intact or ovariectomized (OVX) at weaning then injected with DEX (60 mg/kg) before DOX (3 mg/kg), DOX alone, or PBS. Rats were separated into sedentary and swim cohorts. Body weight was reduced in DOX:DEX- but not PBS- or DOX-treated rats. Echocardiographic parameters were similar in sedentary rats. Swim training revealed greater concentric remodeling in DOX-treated rats and reduced fractional shortening in DOX:DEX-treated rats. Calsequestrin 2 was reduced with DOX and increased with DOX:DEX postswim. Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a was reduced and calsequestrin 2 reduced further by swim training only in intact rats. OVX rats were heavier and developed eccentric remodeling post-swim with DOX and eccentric hypertrophy with DOX:DEX. Changes in SERCA2a and calsequestrin 2 expression were not observed. Ovariectomized DOX- and DOX:DEX-treated rats stopped growing during swim training. DEX coinjection did not relieve DOX-mediated cardiotoxicity in intact or hormone-deficient rats. DOX-mediated reductions in growth, cardiac function, and expression of calcium homeostasis proteins were exacerbated by swim. DEX coadministration did not substantially relieve DOX-mediated cardiotoxicity in young female rats. Ovarian hormones reduce DOX-induced cardiotoxicity.  相似文献   

7.
8.
9.
BackgroundDoxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress.PurposeTo further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity.Study designThe DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo.ResultsSMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes.ConclusionSMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.  相似文献   

10.
11.
12.
13.
Wang  Qilin  Sun  Wendong  Hao  Xuexi  Li  Tianliang  Su  Ling  Liu  Xiangguo 《Cancer cell international》2012,12(1):1-8

Background

Breast cancer is the most common cancer in the Arab world and it ranked first among Saudi females. Doxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer agents used to treat breast cancer. chronic cardiotoxicity is a major limiting factor of the use of doxorubicin. Therefore, our study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of human breast cancer cells (MCF-7) to the action of DOX in an attempt to minimize doxorubicin effective dose and thereby its side effects.

Methods

Human breast cancer cell line MCF-7, was used in this study. Cytotoxic activity of DOX was determined using (sulforhodamine) SRB method. Apoptotic cells were quantified after treatment by annexin V-FITC- propidium iodide (PI) double staining using flow-cytometer. Cell cycle disturbance and doxorubicin uptake were determined after RSVL or DOX treatment.

Results

Treatment of MCF-7 cells with 15 μg/ml RSVL either simultaneously or 24 h before DOX increased the cytotoxicity of DOX, with IC50 were 0.056 and 0.035 μg/ml, respectively compared to DOX alone IC50 (0.417 μg/ml). Moreover, flow cytometric analysis of the MCF-7 cells treated simultaneously with DOX (0.5 μg/ml) and RSVL showed enhanced arrest of the cells in G0 (80%). On the other hand, when RSVL is given 24 h before DOX although there was more increased in the cytotoxic effect of DOX against the growth of the cells, however, there was decreased in percentage arrest of cells in G0, less inhibition of DOX-induced apoptosis and reduced DOX cellular uptake into the cells.

Conclusion

RSVL treatment increased the cytotoxic activity of DOX against the growth of human breast cancer cells when given either simultaneously or 24 h before DOX.  相似文献   

14.

Background

Use of the chemotherapeutic drug doxorubicin (DOX) is associated with serious cardiotoxicity, as it increases levels of reactive oxygen species (ROS). N-3 polyunsaturated fatty acid dietary supplements can be of benefit to patients undergoing cancer therapy. The aims of this study were to determine whether DOX-induced cardiotoxicity is related to mitochondrial uncoupling proteins and whether eicosapentaenoic acid (EPA, C20:5 n-3) or docosahexaenoic acid (DHA, C22:6 n-3) affects DOX-induced cardiomyocyte toxicity.

Results

Treatment of H9C2 cells with DOX resulted in decreased cell viability and UCP2 expression. Treatment with 100 μM EPA or 50 μM DHA for 24 h resulted in a maximal mitochondria concentration of these fatty acids and increased UCP2 expression. Pretreatment with 100 μM EPA or 50 μM DHA prevented the DOX-induced decrease in UCP2 mRNA and protein levels, but these effects were not seen with EPA or DHA and DOX cotreatment. In addition, the DOX-induced increase in ROS production and subsequent mitochondrial membrane potential change (∆ψ) were significantly attenuated by pretreatment with EPA or DHA.

Conclusion

EPA or DHA pre-treatment inhibits the DOX-induced decrease in UCP2 expression, increase in ROS production, and subsequent mitochondrial membrane potential change that contribute to the cardiotoxicity of DOX.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0101-3) contains supplementary material, which is available to authorized users.  相似文献   

15.
Doxorubicin (DOX) is an anthracycline antibiotic widely used as a chemotherapeutic agent in the treatment of several tumours. However, its cardiac toxicity limits its use at maximum therapeutic doses. Most studies implicated increased oxidative stress as the major determinant of DOX cardiotoxicity. The local Saudi flora is very rich in a variety of plants of quite known folkloric or traditional medicinal uses. Tribulus macropterus Boiss., Olea europaea L. subsp. africana (Mill.) P. S. Green, Tamarix aphylla (L.) H. Karst., Cynomorium coccineum L., Cordia myxa L., Calligonum comosum L' Hér, and Withania somnifera (L.) Dunal are Saudi plants known to have antioxidant activities. The aim of the current study was to explore the potential protective effects of methanolic extracts of these seven Saudi plants against DOX-induced cardiotoxicity in rats. Two plants showed promising cardioprotective potential in the order Calligonum comosum > Cordia myxa. The two plant extracts showed potent in vitro radical scavenging and antioxidant properties. They significantly protected against DOX-induced alterations in cardiac oxidative stress markers (GSH and MDA) and cardiac serum markers (CK-MB and LDH activities). Additionally, histopathological examination indicated a protection against DOX-induced cardiotoxicity. In conclusion, C. comosum and C. myxa exerted protective activity against DOX-induced cardiotoxicity, which is, at least partly, due to their antioxidant effect.  相似文献   

16.
The anthracycline antibiotic doxorubicin (DOX) is an effective anticancer agent, but its clinical use is limited by dose-dependent cardiotoxicity. Scutellarin (SCU), a natural polyphenolic flavonoid, is used as a cardioprotective agent for infarction and ischemia-reperfusion injury. This study investigated the beneficial effect of SCU on DOX-induced chronic cardiotoxicity. Rats were injected intraperitoneally (i. p.) with DOX (2.5 mg/kg) twice a week for four weeks and then allowed to rest for two weeks to establish the chronic cardiotoxicity animal model. A dose of 10 mg/kg/day SCU was injected i. p. daily for six weeks to attenuate cardiotoxicity. SCU attenuated DOX-induced elevated oxidative stress levels and cardiac troponin T (cTnT), decreased left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), elevated isovolumic relaxation time (IVRT), electrophysiology and histopathological alterations. In addition, SCU significantly attenuated DOX-induced cardiac fibrosis and reduced extracellular matrix (ECM) accumulation by inhibiting the TGF-β1/Smad2 signaling pathway. Furthermore, SCU also prevented against DOX-induced apoptosis and autophagy as evidenced by upregulation of Bcl-2, downregulation of Bax and cleaved caspase-3, inhibited the AMPK/mTOR pathway. These results revealed that the cardioprotective effect of SCU on DOX-induced chronic cardiotoxicity may be attributed to reducing oxidative stress, myocardial fibrosis, apoptosis and autophagy.  相似文献   

17.
Doxorubicin (DOX) is a highly effective treatment for several forms of cancer. However, clinical experience shows that DOX induces a cumulative and dose-dependent cardiomyopathy that has been ascribed to redox-cycling of the drug on the mitochondrial respiratory chain generating free radicals and oxidative stress in the process. Mitochondrial dysfunction including induction of the mitochondrial permeability transition (MPT) and inhibition of mitochondrial respiration have been implicated as major determinants in the pathogenesis of DOX cardiotoxicity. The present work was aimed at investigating whether the inhibition of mitochondrial respiration occurs secondarily to MPT induction in heart mitochondria isolated from DOX-treated rats and whether one or both consequences of DOX treatment are related with oxidation of protein thiol residues. DOX-induced oxidative stress was associated with the accumulation of products of lipid peroxidation and the depletion of alpha-tocopherol in cardiac mitochondrial membranes. No changes in mitochondrial coenzyme Q9 and Q10 concentrations were detected in hearts of DOX-treated rats. Cardiac mitochondria from DOX-treated rats were more susceptible to diamide-dependent induction of the MPT. Although DOX treatment did not affect state 4 respiration, state 3 respiration was decreased in heart mitochondria isolated from DOX-treated rats, which was reversed in part by adding either cyclosporin A or dithiothreitol, but not Trolox. The results suggest that in DOX-treated rats, (i) induction of the MPT is at least in part responsible for decreased mitochondrial respiration, (ii) heart mitochondria are more susceptible to diamide induced-MPT, (iii) thiol-dependent alteration of mitochondrial respiration is partially reversible ex vivo with dithiothreitol. Collectively, these data are consistent with the thesis that thiol-dependent alteration of MPT and respiration is an important factor in DOX-induced mitochondrial dysfunction.  相似文献   

18.
《Translational oncology》2020,13(2):471-480
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号