首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We describe a type III restriction and modification (R/M) system, LlaFI, in Lactococcus lactis. LlaFI is encoded by a 12-kb native plasmid, pND801, harbored in L. lactis LL42-1. Sequencing revealed two adjacent open reading frames (ORFs). One ORF encodes a 680-amino-acid polypeptide, and this ORF is followed by a second ORF which encodes an 873-amino-acid polypeptide. The two ORFs appear to be organized in an operon. A homology search revealed that the two ORFs exhibited significant similarity to type III restriction (Res) and modification (Mod) subunits. The complete amino acid sequence of the Mod subunit of LlaFI was aligned with the amino acid sequences of four previously described type III methyltransferases. Both the N-terminal regions and the C-terminal regions of the Mod proteins are conserved, while the central regions are more variable. An S-adenosyl methionine (Ado-Met) binding motif (present in all adenine methyltransferases) was found in the N-terminal region of the Mod protein. The seven conserved helicase motifs found in the previously described type III R/M systems were found at the same relative positions in the LlaFI Res sequence. LlaFI has cofactor requirements for activity that are characteristic of the previously described type III enzymes. ATP and Mg2+ are required for endonucleolytic activity; however, the activity is not strictly dependent on the presence of Ado-Met but is stimulated by it. To our knowledge, this is the first type III R/M system that has been characterized not just in lactic acid bacteria but also in gram-positive bacteria.  相似文献   

2.
3.
Volume 61, no. 6, p. 2193-2202: the restriction/modification system designation "LlaII" should read "LlaDCHI" throughout the paper to conform to conventional nomenclature for such systems. [This corrects the article on p. 2193 in vol. 61.].  相似文献   

4.
The intracellular bacterial agent of Q fever, Coxiella burnetii, translocates effector proteins into its host cell cytosol via a Dot/Icm type IV secretion system (T4SS). The T4SS is essential for parasitophorous vacuole formation, intracellular replication, and inhibition of host cell death, but the effectors mediating these events remain largely undefined. Six Dot/Icm substrate-encoding genes were recently discovered on the C. burnetii cryptic QpH1 plasmid, three of which are conserved among all C. burnetii isolates, suggesting that they are critical for conserved pathogen functions. However, the remaining hypothetical proteins encoded by plasmid genes have not been assessed for their potential as T4SS substrates. In the current study, we further defined the T4SS effector repertoire encoded by the C. burnetii QpH1, QpRS, and QpDG plasmids that were originally isolated from acute-disease, chronic-disease, and severely attenuated isolates, respectively. Hypothetical proteins, including those specific to QpRS or QpDG, were screened for translocation using the well-established Legionella pneumophila T4SS secretion model. In total, six novel plasmid-encoded proteins were translocated into macrophage-like cells by the Dot/Icm T4SS. Four newly identified effectors are encoded by genes present only on the QpDG plasmid from severely attenuated Dugway isolates, suggesting that the presence of specific effectors correlates with decreased virulence. These results further support the idea of a critical role for extrachromosomal elements in C. burnetii pathogenesis.  相似文献   

5.
The lactococcal abortive phage infection mechanism AbiQ recently was classified as a type III toxin-antitoxin system in which the toxic protein (ABIQ) is regulated following cleavage of its repeated noncoding RNA antitoxin (antiQ). In this study, we investigated the role of the antitoxin in antiphage activity. The cleavage of antiQ by ABIQ was characterized using 5′ rapid amplification of cDNA ends PCR and was located in an adenine-rich region of antiQ. We next generated a series of derivatives with point mutations within antiQ or with various numbers of antiQ repetitions. These modifications were analyzed for their effect on the antiphage activity (efficiency of plaquing) and on the endoribonuclease activity (Northern hybridization). We observed that increasing or reducing the number of antiQ repeats significantly decreased the antiphage activity of the system. Several point mutations had a similar effect on the antiphage activity and were associated with changes in the digestion profile of antiQ. Interestingly, a point mutation in the putative pseudoknot structure of antiQ mutants led to an increased AbiQ antiphage activity, thereby offering a novel way to increase the activity of an abortive infection mechanism.  相似文献   

6.
We have determined a 35-kb sequence of the groESL-gutR-cotA(45°–52°) region of the Bacillus subtilis genome.In addition to the groESL, gutRB and cotA genes reported previously,we have newly identified 24 ORFs including gutA and fruC genes,encoding glucitol permease and fructokinase, respectively. Theinherent restriction/modification system genes, hsdMR and hsdMM,were mapped between groESL and gutRB, and we have identifiedtwo open reading frames (ORFs) encoding 5-methylcytosine formingDNA methyl transferase and an operon probably encoding a restrictionenzyme complex. The unusual genome structure of few ORFs andlower GC content around the restriction/modification genes stronglysuggests that the region originated from a bacteriophage integratedduring evolution.  相似文献   

7.
Human antibody recognition of Chlamydia trachomatis plasmid-encoded Pgp3 protein is dependent on the native conformation of Pgp3. The structural basis for the conformation dependence and the function of Pgp3 remain unknown. Here, we report that Pgp3 trimerization is required for the recognition of Pgp3 by human antibodies. In a native polyacrylamide gel, Pgp3 purified from a bacterial expression system migrated as stable trimers that were dissociated into monomers only by treatment with urea or sodium dodecyl sulfate (SDS) but not nonionic detergents. Human antibodies recognized trimeric but not monomeric Pgp3, suggesting that Pgp3 is presented to the human immune system as trimers during C. trachomatis infection. The endogenous Pgp3 secreted into the chlamydial outer membrane complex or host cell cytosol is always trimerized. Intact Pgp3 trimers were eluted from the outer membrane complex by a combination of nonionic detergents with reducing agents but not by the presence of either alone. These observations have provided important information for further understanding the role of Pgp3 in chlamydial pathogenesis and potentially optimizing Pgp3 as a subunit vaccine candidate antigen.Chlamydia trachomatis consists of multiple serovars and causes various human diseases. Serovars A to C primarily infect ocular epithelial cells, potentially leading to blinding trachoma (23, 42). Serovars D to K mainly target urogenital epithelial cells (39) whereas serovars L1 to L3 can invade lymphatic tissue, potentially resulting in systematic infection (40). Despite the differences in tissue tropism, all C. trachomatis organisms share a conserved biphasic growth cycle that has to be completed in a cytoplasmic vacuole called an inclusion (21, 46). Chlamydial infection starts with the entry of an infectious elementary body (EB) into an epithelial cell via pathogen-induced endocytosis (8, 19). The endocytosed EB differentiates to a noninfectious but metabolically active reticulate body (RB). After replication, the progeny RBs differentiate to EBs that exit the infected cells to invade adjacent cells (25). The C. trachomatis organisms also share a highly conserved cryptic plasmid that encodes 8 open reading frames (ORFs) designated pORF 1 to 8 (28, 35, 43).Urogenital tract infection with C. trachomatis is a leading cause of sexually transmitted diseases worldwide (11) and, if left untreated, can lead to severe complications such as pelvic inflammatory diseases, ectopic pregnancy, and infertility (15). Due to the lack of symptoms exhibited by individuals infected with C. trachomatis, it is not possible to effectively control C. trachomatis infection with antibiotics. Prophylactic vaccines may be among the most effective approaches for preventing C. trachomatis-induced pathologies (34). However, the pathogenic mechanisms of C. trachomatis remain unclear and there is no licensed C. trachomatis vaccine, probably due to limited knowledge of the roles of individual C. trachomatis antigens in pathogenesis and protective immunity. The cryptic plasmid has been considered a virulence factor of C. trachomatis, because plasmid-free variants have been found to be less invasive and to cause pathologies of lesser severity in mouse upper genital tract tissues (7, 32). However, the roles of the plasmid-encoded or regulated proteins in either chlamydial pathogenesis or protective immunity remain largely unknown. Pgp3, one of the plasmid-encoded proteins, was found to be recognized by human antibodies in enzyme-linked immunosorbent assays (ELISAs) but not in Western blot assays (9). We further confirmed that Pgp3 was an immunodominant antigen in woman urogenitally infected with C. trachomatis and that the human antibody recognition of Pgp3 was dependent on the native conformation of Pgp3 (30). We also observed that among the 8 ORFs encoded by the cryptic plasmid, only Pgp3 was secreted into the cytosol of the infected cells (28). Furthermore, various groups demonstrated that immunization with pgp3-encoding plasmid DNA induced protective immunity in mice (16, 29). However, the molecular basis for the conformation dependence of human antibody recognition of Pgp3 remains uncharacterized and the function of Pgp3 is unknown. Here, we present evidence that Pgp3 forms stable trimers that are responsible for the native conformation-dependent recognition of Pgp3 by human antibodies. The current study has provided important information for further understanding the roles of Pgp3 in C. trachomatis pathogenesis and protective immunity.  相似文献   

8.
An extremely thermostable restriction endonuclease, PspGI, was purified from Pyrococcus sp. strain GI-H. PspGI is an isoschizomer of EcoRII and cleaves DNA before the first C in the sequence 5′ ^CCWGG 3′ (W is A or T). PspGI digestion can be carried out at 65 to 85°C. To express PspGI at high levels, the PspGI restriction-modification genes (pspGIR and pspGIM) were cloned in Escherichia coli. M.PspGI contains the conserved sequence motifs of α-aminomethyltransferases; therefore, it must be an N4-cytosine methylase. M.PspGI shows 53% similarity to (44% identity with) its isoschizomer, M.MvaI from Micrococcus variabilis. In a segment of 87 amino acid residues, PspGI shows significant sequence similarity to EcoRII and to regions of SsoII and StyD4I which have a closely related recognition sequence (5′ ^CCNGG 3′). PspGI was expressed in E. coli via a T7 expression system. Recombinant PspGI was purified to near homogeneity and had a half-life of 2 h at 95°C. PspGI remained active following 30 cycles of thermocycling; thus, it can be used in DNA-based diagnostic applications.  相似文献   

9.
Cloning and Characterization of Adeno-Associated Virus Type 5   总被引:20,自引:8,他引:12       下载免费PDF全文
Adeno-associated virus type 5 (AAV5) is distinct from other dependovirus serotypes based on DNA hybridization and serological data. To better understand the biology of AAV5, we have cloned and sequenced its genome and generated recombinant AAV5 particles. The single-stranded DNA genome is similar in length and genetic organization to that of AAV2. The rep gene of AAV5 is 67% homologous to AAV2, with the majority of the changes occurring in the carboxyl and amino termini. This homology is much less than that observed with other reported AAV serotypes. The inverted terminal repeats (ITRs) are also unique compared to those of the other AAV serotypes. While the characteristic AAV hairpin structure and the Rep DNA binding site are retained, the consensus terminal resolution site is absent. These differences in the Rep proteins and the ITRs result in a lack of cross-complementation between AAV2 and AAV5 as measured by the production of recombinant AAV particles. Alignment of the cap open reading frame with that of the other AAV serotypes identifies both conserved and variable regions which could affect tissue tropism and particle stability. Comparison of transduction efficiencies in a variety of cells lines and a lack of inhibition by soluble heparin indicate that AAV5 may utilize a distinct mechanism of uptake compared to AAV2.  相似文献   

10.
为解决氨基酸发酵工业中的噬菌体污染问题, 对cglI基因复合体在钝齿棒杆菌中的功能活性表达进行研究。通过PCR从谷氨酸棒杆菌基因组扩增cglI基因复合体, 构建重组质粒pJL23-cglI, 转化钝齿棒杆菌T6-13后得到重组菌株。定性和定量检测重组菌株的噬菌体抗性。实验结果表明, 携带cglI基因复合体的重组钝齿棒杆菌显示了明显的抗噬菌体功能活性和较广的抗噬菌体谱, 进而证实了cglI基因复合体用于构建钝齿棒杆菌抗噬菌体菌株的可行性, 为解决氨基酸发酵生产中的噬菌体污染问题提供了一种有效方法。  相似文献   

11.
为解决氨基酸发酵工业中的噬菌体污染问题, 对cglI基因复合体在钝齿棒杆菌中的功能活性表达进行研究。通过PCR从谷氨酸棒杆菌基因组扩增cglI基因复合体, 构建重组质粒pJL23-cglI, 转化钝齿棒杆菌T6-13后得到重组菌株。定性和定量检测重组菌株的噬菌体抗性。实验结果表明, 携带cglI基因复合体的重组钝齿棒杆菌显示了明显的抗噬菌体功能活性和较广的抗噬菌体谱, 进而证实了cglI基因复合体用于构建钝齿棒杆菌抗噬菌体菌株的可行性, 为解决氨基酸发酵生产中的噬菌体污染问题提供了一种有效方法。  相似文献   

12.
Lactobacillus delbrueckii subsp. lactis (Lb. lactis) CNRZ 326 is widely used in the propagation of Lb. delbrueckii bacteriophages. In this study, evidence is presented that this strain possesses a restriction-modification (R/M) system. The mitomycin C-induced temperate bacteriophage lb539 has a reduced efficiency of plaquing (EOP) on CNRZ 326 cells (EOP = 10−3), but after several passages on this strain, or on the indicator strain Lb. lactis LKT, the recovered phages (phages lb539.326 and lb539.LKT) have an EOP equal to 1. Restrictive development on CNRZ 326 was also observed after phage lb539.326 was propagated on the strain Lb. lactis CRL 934. The R/M system was also active against the virulent Lb. delbrueckii phage ll-h. Plasmid DNA was not detected in CNRZ 326, which suggests that the R/M system described is chromosomally encoded. Received: 11 September 1997 / Accepted: 21 October 1997  相似文献   

13.
Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase.  相似文献   

14.
The nucleotide sequence of the plasmid-encoded LlaKR2I restriction-modification (R-M) system of Lactococcus lactis subsp. lactis biovar diacetylactis KR2 was determined. This R-M system comprises divergently transcribed endonuclease (llaKR2IR) and methyltransferase (llaKR2IM) genes; located in the intergenic region is a copy of the insertion element IS982, whose putative transposase gene is codirectionally transcribed with llaKR2IM. The deduced sequence of the LlaKR2I endonuclease shared homology with the type II endonuclease Sau3AI and with the MutH mismatch repair protein, both of which recognize and cleave the sequence 5′ GATC 3′. In addition, M·LlaKR2I displayed homology with the 5-methylcytosine methyltransferase family of proteins, exhibiting greatest identity with M·Sau3AI. Both of these proteins shared notable homology throughout their putative target recognition domains. Furthermore, subclones of the native parental lactococcal plasmid pKR223, which encode M·LlaKR2I, all remained undigested after treatment with Sau3AI despite the presence of multiple 5′ GATC 3′ sites. The combination of these data suggested that the specificity of the LlaKR2I R-M system was likely to be 5′ GATC 3′, with the cytosine residue being modified to 5-methylcytosine. The IS982 element located within the LlaKR2I R-M system contained at its extremities two 16-bp perfect inverted repeats flanked by two 7-bp direct repeats. A perfect extended promoter consensus, which represented the likely original promoter of the llaKR2IR gene, was shown to overlap the direct repeat sequence on the other side of IS982. Specific deletion of IS982 and one of these direct repeats via a PCR strategy indicated that the LlaKR2I R-M determinants do not rely on elements within IS982 for expression and that the efficiency of bacteriophage restriction was not impaired.  相似文献   

15.
采用菌丝体原位包埋方法和高压脉冲电泳技术从不吸水链霉菌梧州新亚种(Streptomyces ahygroscopicus wuzhouensis neosubsp. 11371)中分离得到两条质粒DNA带.通过双向电泳证明,2个质粒均为线性分子,按照分子量大小依次命名为pSAL1、pSAL2.并对不吸水链霉菌梧州新亚种的限制-修饰系统进行初步探讨:将来自变铅青链霉菌TK54的高拷贝质粒pIJ702转化不吸水链霉菌梧州新亚种原生质体,未能得到转化子,改用pIJ702转化不吸水链霉菌梧州新亚种U-3原生质体,得到了转化子.  相似文献   

16.
17.
18.
The gene encoding a type I pullulanase was identified from the genome sequence of the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. In addition, the homologous gene was isolated from a gene library of Anaerobranca horikoshii and sequenced. The proteins encoded by these two genes showed 39% amino acid sequence identity to the pullulanases from the thermophilic anaerobic bacteria Fervidobacterium pennivorans and Thermotoga maritima. The pullulanase gene from A. gottschalkii (encoding 865 amino acids with a predicted molecular mass of 98 kDa) was cloned and expressed in Escherichia coli strain BL21(DE3) so that the protein did not have the signal peptide. Accordingly, the molecular mass of the purified recombinant pullulanase (rPulAg) was 96 kDa. Pullulan hydrolysis activity was optimal at pH 8.0 and 70°C, and under these physicochemical conditions the half-life of rPulAg was 22 h. By using an alternative expression strategy in E. coli Tuner(DE3)(pLysS), the pullulanase gene from A. gottschalkii, including its signal peptide-encoding sequence, was cloned. In this case, the purified recombinant enzyme was a truncated 70-kDa form (rPulAg′). The N-terminal sequence of purified rPulAg′ was found 252 amino acids downstream from the start site, presumably indicating that there was alternative translation initiation or N-terminal protease cleavage by E. coli. Interestingly, most of the physicochemical properties of rPulAg′ were identical to those of rPulAg. Both enzymes degraded pullulan via an endo-type mechanism, yielding maltotriose as the final product, and hydrolytic activity was also detected with amylopectin, starch, β-limited dextrins, and glycogen but not with amylose. This substrate specificity is typical of type I pullulanases. rPulAg was inhibited by cyclodextrins, whereas addition of mono- or bivalent cations did not have a stimulating effect. In addition, rPulAg′ was stable in the presence of 0.5% sodium dodecyl sulfate, 20% Tween, and 50% Triton X-100. The pullulanase from A. gottschalkii is the first thermoalkalistable type I pullulanase that has been described.  相似文献   

19.
Host-controlled restriction and modification of TP-1C phage and infectious phage DNA occurs in Bacillus stearothermophilus and is subject to control by TP-8 or TP-12 prophage.  相似文献   

20.
By using monoclonal antibodies directed against discoidin II,we have isolated cDNA clones from axenically grown Ax-2 cells.On cDNA clone (D2) condtained a 1.2-k.b insert encoding theentire discoidin II protein, which is conposed of 257 aminoacid residuces and has a calculated molecular mass of 28,574.The amino acid sequences, determined by Edman degradation ofsix tryptic peptides of discoidin II, were identical to thosededuced from the cDNA sequences. The protein bears no resemblanceto any proteins in the data banks, except that its sequenceis 49% identical with the amino acid sequence of discoidin I.Discoidin II shares with discoidin I both a carbohydratebindingsite and an Arg-Gly-Asp (RGD) sequence, which has been foundin fibronectin in mammalian cells. With the onset of aggregation(8 h of development), a 1.3-kb discoidin II mRNA begins to accumulate.A similar pattern of regulation occurs at the protein level. 1Present address: MRC Laboratory for Molecular Cell Biology,University College London, Gower Street, London, WC1E 6BT UnitedKingdom  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号