首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oligomerization of adenosine A2A and dopamine D2 receptors in living cells   总被引:5,自引:0,他引:5  
We investigated whether oligomerization of adenosine A(2A) receptor (A(2A)R) and dopamine D(2) receptor (D(2)R) exists in living cells using modified bioluminescence resonance energy transfer (BRET(2)) technology. Fusion of these receptors to a donor, Renilla luciferase (Rluc), and to an acceptor, modified green fluorescent protein (GFP(2)), did not affect the ligand binding affinity, subcellular distribution, and coimmunoprecipitation of the receptors. BRET was detected not only between Myc-D(2)R-Rluc and A(2A)R-GFP(2) but also between HA-tagged A(2A)R-Rluc and A(2A)R-GFP(2). These results indicate A(2A)R, either homomeric or heteromeric with D(2)R, exists as an oligomer in living cells.  相似文献   

2.
3.
We have previously demonstrated that adenosine controls the release of catecholamines (CA) from carotid body (CB) acting on A2B receptors. Here, we have tested the hypothesis that the control is exerted via an interaction between adenosine A2B and dopamine D2 receptors present in chemoreceptor cells. Experiments were performed in vitro in CB from 3 months rats. The effect of A2B adenosine and D2 dopamine agonists and antagonists applied alone or in combination were studied on basal (20%O2) and hypoxia (10%O2)-evoked release of CA and cAMP content of CB. We have found that adenosine A2 agonists and D2 antagonists dose-dependently increased basal and evoked release CA from the CB while A2 antagonists and D2 agonists had an inhibitory action. The existence of A2B-D2 receptor interaction was established because the inhibitory action of A2 antagonists was abolished by D2 antagonists, and the stimulatory action of A2 agonists was abolished by D2 agonists. Further, A2 agonists increased and D2 agonist decreased cAMP content in the CB; their co-application eliminated the response. The present results provide direct pharmacological evidence that an antagonistic interaction between A2B adenosine and D2 dopamine receptors exist in rat CB and would explain the dopamine-adenosine interactions on ventilation previously observed.  相似文献   

4.
Behavioral sensitization to psychostimulants manifests as an increased locomotor response with repeated administration. Dopamine systems are accepted to play a fundamental role in sensitization, but the role of specific dopamine receptor subtypes has not been completely defined. This study used the combination of dopamine D2 receptor-deficient mice and a D1-like antagonist to examine dopamine D1 and D2 receptor involvement in acute and sensitized locomotor responses to methamphetamine. Absence of the dopamine D2 receptor resulted in attenuation of the acute stimulant effects of methamphetamine. Mutant and wild-type mice exhibited sensitization that lasted longer within the time period of the challenge test in the mutant animals. Pretreatment with the D1-like receptor antagonist SCH 23390 produced more potent reductions in the acute and sensitized locomotor responses to methamphetamine in D2 receptor-deficient mice than in wild-type mice; however, the expression of locomotor sensitization when challenged with methamphetamine alone was equivalently attenuated by previous treatment with SCH 23390. These data suggest that dopamine D2 receptors play a key role in the acute stimulant and sensitizing effects of methamphetamine and act in concert with D1-like receptors to influence the acquisition of methamphetamine-induced behavioral sensitization, traits that may influence continued methamphetamine use.  相似文献   

5.
Dopamine receptors are a subclass of the super family of G protein-coupled receptors, that transduce their effects by coupling to specific G proteins. Within the dopamine receptor family, the adenylyl cyclase stimulatory receptors include the D1 and D5 subtypes. The D1 and D5 dopamine receptors are genetically distinct, sharing >80% sequence homology within the highly conserved seven transmembrane spanning domains, but displaying only 50% overall homology at the amino acid level. When expressed in transfected GH4C1 rat pituitary cells, both D1 and D5 receptors stimulate adenylyl cyclase and have identical affinities toward dopaminergic agonists and antagonists. In order to analyze specific signaling pathways mediated by activation of either D1 or D5 receptors, we have identified the G proteins that are coupled to these receptors. Through functional analyses and competition binding studies, and from immunoprecipitation techniques, using antisera against the various α subunits of G proteins, we have established that both D1 and D5 receptors couple to Gsα. In addition, D1 receptors are also coupled to Goα. Since Goα has been implicated in the regulation of Ca2+, K+, and Na+ channels, this finding would suggest that D1 receptors can mediate the functional activity of these ion channels. There is also evidence to indicate that D5 receptors couple to Gzα, a novel G protein abundantly expressed in neurons. Thus, despite similar pharmacological properties, such differential coupling of D1 and D5 receptors to G proteins other than Gsα, indicates that dopamine can transduce varied signaling responses upon the simultaneous stimulation of both these receptors.  相似文献   

6.
Phosphorylation of extracellular signal-regulated kinase (ERK) is linked to activation of many cell surface receptors and kinases. However, phosphorylated ERK has not been used as a biochemical marker to monitor pharmacology of these biomolecules, largely because commonly used methods to detect the phosphoprotein are not quantitative and do not have sufficient throughput. In this article, a high-throughput, 384-well, cell-based functional assay to quantify dopamine agonist-induced ERK phosphorylation in D2- and D3-overexpressed cell lines is described. The assay uses infrared-labeled secondary antibodies to detect phospho-ERK, and the signals in the wells of the microtiter plate are quantified by a LI-COR infrared scanner. V(max), EC(50), and functional K(i) values of various D2 and D3 agonists and antagonists determined in this assay are similar to those in the literature. The assay is nonradioactive, is quantitative, and has a good signal-to-noise ratio. In addition, the signal is stable. This assay can be used to monitor the activities of many G protein-coupled receptors and other signaling biomolecules that are linked to phosphorylation of ERK. The methodology can potentially be used to detect the change in level of any cellular protein in which highly selective antibodies are available.  相似文献   

7.
Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.  相似文献   

8.
Adenosine and its metabolite, inosine, have been described as molecules that participate in regulation of inflammatory response. The aim of this study was to investigate the effect of adenosine and inosine in a mouse model of carrageenan-induced pleurisy as well as the participation of adenosine receptors in this response. Injection of carrageenan into the pleural cavity induced an acute inflammatory response characterized by leukocyte migration, pleural exudation, and increased release of interleukin-1β and tumor necrosis factor-α in pleural exudates. The treatment with adenosine (0.3–100 mg/kg, i.p.) and inosine (0.1–300 mg/kg, i.p.) 30 min before carrageenan injection reduced significantly all these parameters analyzed. Our results also demonstrated that A2A and A2B receptors seem to mediate the adenosine and inosine effects observed, since pretreatment with selective antagonists of adenosine A2A (ZM241385) and A2B (alloxazine) receptors, reverted the inhibitory effects of adenosine and inosine in pleural inflammation. The involvement of A2 receptors was reinforced with adenosine receptor agonist CGS21680 treatment, since its anti-inflammatory effects were reversed completely and partially with ZM241385 and alloxazine injection, respectively. Moreover, the combined treatment with subeffective dose of adenosine (0.3 mg/kg) and inosine (1.0 mg/kg) induced a synergistic anti-inflammatory effect. Thus, based on these findings, we propose that inosine contributes with adenosine to exert anti-inflammatory effects in pleural inflammation, reinforcing the notion that endogenous nucleosides play an important role in controlling inflammatory diseases. This effect is likely mediated by the activation of adenosine A2 subtype receptors and inhibition of production or release of pro-inflammatory cytokines.  相似文献   

9.
Xie X  Jhaveri KA  Ding M  Hughes LF  Toth LA  Ramkumar V 《Life sciences》2007,81(13):1031-1041
The striatal dopamine D2 receptor (D2R) and adenosine A2A receptor (A2AAR) exhibit mutually antagonistic effects through physical interactions and by differential modulation of post-receptor signaling pathways. The expression of the A2AAR and the D2R is differentially regulated by nuclear factor-kappaB (NF-kappaB). In this report, we determined the role of NF-kappaB in regulation of these receptors by comparing mice deficient in the NF-kappaB p50 subunit (p50 KO) with genetically intact B6129PF2/J (F2) mice. Quantification of adenosine receptor (AR) subtypes in mouse striatum by real time PCR, immunocytochemistry and radioligand binding assays showed more A2AAR but less A1AR in p50 KO mice as compared with F2 mice. Striata from p50 KO mice also had less D2R mRNA and [(3)H]-methylspiperone binding than did striata from F2 mice. G(alphaolf) and G(alphas) proteins, which are transducers of A2AAR signals, were also present at a higher level in striata from the p50 KO versus F2 mice. In contrast, the G(alphai1) protein, which transduces signals from the A1AR and D2R, was significantly reduced in striata from p50 KO mice. Behaviorally, p50 KO mice exhibited increased locomotor activity relative to that of F2 mice after caffeine ingestion. These data are consistent with a role for the NF-kappaB in the regulation of A1AR, A2AAR, D2R and possibly their coupling G proteins in the striatum. Dysregulation of these receptors in the striata of p50 KO mice might sensitize these animals to locomotor stimulatory action of caffeine.  相似文献   

10.
Adenosine A(2a) receptor (A(2a)R) colocalizes with dopamine D(2) receptor (D(2)R) in the basal ganglia and modulates D(2)R-mediated dopaminergic activities. A(2a)R and D(2)R couple to stimulatory and inhibitory G proteins, respectively. Their opposing roles in regulating neuronal activities, such as locomotion and alcohol consumption, are mediated by their opposite actions on adenylate cyclase, which often serves as "co-incidence detector" of various activators. On the other hand, the neural actions of A(2a)R and D(2)R are also, at least partially, independent of each other, as indicated by studies using D(2)R and A(2a)R knock-out mice. Here we co-expressed human A(2a)R and human D(2L)R in CHO cells and examined their signaling characteristics. Human A(2a)R desensitized rapidly upon agonist stimulation. A(2a)R activity (80%) was diminished after 2 hr of pretreatment with its agonist CGS21680. In contrast, human D(2L)R activity was sustained even after 2 hr and 18 hr pretreatment with its agonist quinpirole. Long-term (18 hr) stimulation of human D(2L)R also increased basal cAMP levels in CHO cells, whereas long-term (18 hr) activation of human A(2a)R did not affect basal cAMP levels. Furthermore, long-term (18 hr) activation of D(2L)R dramatically sensitized A(2a)R-induced stimulation of adenylate cyclase in a pertussis toxin-sensitive way. Forskolin-induced cAMP accumulation was significantly increased after short-term (2 hr) human D(2L)R stimulation and further elevated after long-term (18 hr) D(2L)R activation. However, neither short-term (2 hr) nor long-term (18 hr) stimulation of A(2a)R affected the inhibitory effects of D(2L)R on adenylate cyclase. Co-stimulation of A(2a)R and D(2L)R could not induce desensitization or sensitization of D(2L)R either. In summary, signaling through A(2a)R and D(2L)R is distinctive and synergistic, supporting their unique and yet integrative roles in regulating neuronal functions when both receptors are present.  相似文献   

11.
Activation of D1 dopamine receptors expressed in the kidneys promotes the excretion of sodium and regulates sodium levels during increases in dietary sodium intake. A decrease in the expression or function of D1 receptors results in increased sodium retention which can potentially lead to the development of hypertension. Studies have shown that in the absence of functional D1 receptors, in null mice, the systolic, diastolic, and mean arterial pressures are higher. Previous studies have shown that the expression and function of D1 receptors in the kidneys are decreased in animal models of diabetes. The mechanisms that down-regulate the expression of renal D1 receptor gene in diabetes are not well understood. Using primary renal cells and acutely isolated kidneys from the streptozotocin-induced rat diabetic model, we demonstrate that the renal D1 receptor expression is down-regulated by the extracellular cAMP-adenosine pathway in vitro and in vivo. In cultures of primary renal cells, a 3 mm, 60-h cAMP treatment down-regulated the expression of D1 receptors. In vivo, we determined that the plasma and urine cAMP levels as well as the expression of 5'-ectonucleotidase, tissue-nonspecific alkaline phosphatase, and adenosine A2a receptors are significantly increased in diabetic rats. Inhibitors of 5'-ectonucleotidase and tissue-nonspecific alkaline phosphatase, α,β-methyleneadenosine 5'-diphosphate, and levamisole, respectively, blocked the down-regulation of D1 receptors in the primary renal cells and in the kidney of diabetic animals. The results suggest that inhibitors of the extracellular cAMP-adenosine pathway reverse the down-regulation of renal D1 receptor in diabetes.  相似文献   

12.
Inosine, a naturally occurring purine formed from the breakdown of adenosine, is associated with immunoregulatory effects. Evidence shows that inosine modulates lung inflammation and regulates cytokine generation. However, its role in controlling allergen-induced lung inflammation has yet to be identified. In this study, we aimed to investigate the role of inosine and adenosine receptors in a murine model of lung allergy induced by ovalbumin (OVA). Intraperitoneal administration of inosine (0.001–10 mg/kg, 30 min before OVA challenge) significantly reduced the number of leukocytes, macrophages, lymphocytes and eosinophils recovered in the bronchoalveolar lavage fluid of sensitized mice compared with controls. Interestingly, our results showed that pre-treatment with the selective A2A receptor antagonist (ZM241385), but not with the selective A2B receptor antagonist (alloxazine), reduced the inhibitory effects of inosine against macrophage count, suggesting that A2A receptors mediate monocyte recruitment into the lungs. In addition, the pre-treatment of mice with selective A3 antagonist (MRS3777) also prevented inosine effects against macrophages, lymphocytes and eosinophils. Histological analysis confirmed the effects of inosine and A2A adenosine receptors on cell recruitment and demonstrated that the treatment with ZM241385 and alloxazine reverted inosine effects against mast cell migration into the lungs. Accordingly, the treatment with inosine reduced lung elastance, an effect related to A2 receptors. Moreover, inosine reduced the levels of Th2-cytokines, interleukin-4 and interleukin-5, an effect that was not reversed by A2A or A2B selective antagonists. Our data show that inosine acting on A2A or A3 adenosine receptors can regulate OVA-induced allergic lung inflammation and also implicate inosine as an endogenous modulator of inflammatory processes observed in the lungs of asthmatic patients.  相似文献   

13.
Elevated synaptic levels of dopamine may induce striatal neurodegeneration in l-DOPA-unresponsive parkinsonism subtype of multiple system atrophy (MSA-P subtype), multiple system atrophy, and methamphetamine addiction. We examined the participation of dopamine and D1 dopamine receptors in the genesis of postsynaptic neurodegeneration. Chronic treatment of human SK-N-MC neuroblastoma cells with dopamine or H2O2 increased NO production and accelerated cytotoxicity, as indexed by enhanced nitrite levels and cell death. The antioxidant sodium metabisulfite or SCH 23390, a D1 dopamine receptor-selective antagonist, partially blocked dopamine effects but together ablated dopamine-mediated cytotoxicity, indicating the participation of both autoxidation and D1 receptor stimulation. Direct activation of D1 dopamine receptors with SKF R-38393 caused cytotoxicity, which was refractory to sodium metabisulfite. Dopamine and SKF R-38393 induced overexpression of the nitric-oxide synthase (NOS) isoforms neuronal NOS, inducible NOS (iNOS), and endothelial NOS in a protein kinase A-dependent manner. Functional studies showed that approximately 60% of total NOS activity was due to activation of iNOS. The NOS inhibitor N(G)-nitro-l-arginine methyl ester and genistein, wortmannin, or NF-kappaB SN50, inhibitors of protein tyrosine kinases phosphatidylinositol 3-kinase and NF-kappaB, respectively, reduced nitrite production by dopamine and SKF R-38393 but were less effective in attenuating H2O2-mediated effects. In rat striatal neurons, dopamine and SKF R-38393, but not H2O2, accelerated cell death through increased expression of neuronal NOS and iNOS but not endothelial NOS. These data demonstrate a novel pathway of dopamine-mediated postsynaptic oxidative stress and cell death through direct activation of NOS enzymes by D1 dopamine receptors and its associated signaling pathways.  相似文献   

14.
15.
Wang ZH  Hu QH  Zhong H  Deng FM  He F 《生理学报》2011,63(1):39-47
为了探讨小凹蛋白-1(caveolin-1,Cav-1)在人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)细胞外钙敏感受体(extracellular Ca2+-sensing receptor,CaR)介导Ca2+内流中的作用,本实验研究了细胞膜穴样凹陷(caveolae)结构破坏剂Filipin或Cav-1基因沉默后对CaR介导Ca2+内流的影响。Fura-2/AM负载检测细胞内Ca2+浓度(intracellular Ca2+ concentration,[Ca2+]i)。结果显示,HUVECs中CaR对不同浓度细胞外Ca2+刺激无反应。无论细胞外为零钙液或含钙液时,精胺(Spermine,2mmol/L)刺激CaR时均引起[Ca2+]i升高(P<0.05),其中细胞外液为含钙液时,[Ca2+]i升高较细胞外为零钙液时更明显(P<0.05),CaR的负性变构调节剂Calhex231(1μmol/L)均可完全阻断Spermine刺激引起的[Ca2+]i升高(P<0.05);相反,Spermine升高[Ca2+]i作用可被Filipin(1.5μ...  相似文献   

16.
The expression of D1 dopamine (DA) receptor gene is regulated during development, aging, and pathophysiology. The extracellular factors and signaling mechanisms that modulate the expression of D1 DA receptor have not been well characterized. Here, we present novel evidence that endogenous D1 DA receptor expression is inhibited by extracellular cAMP in the Cath.A Derived (CAD) catecholaminergic neuronal cell line. CAD cells express the multi-drug resistance protein 5 transporters and secrete cAMP. Addition of exogenous cAMP decreases D1 receptor mRNA and protein greater than fourfold in 24 h. The cAMP-induced decrease of D1 receptor mRNA levels is blocked by cGMP and by 1,3-dipropyl-8-(p-sulfo-phenyl)xanthine, an inhibitor of ecto-phosphodiestrase. Extracellular AMP, a metabolite of cAMP, also independently decreased D1 receptor mRNA levels. Inhibitors of ecto-nucleotidases, alpha,beta-methyleneadenosine 5'-di-phosphate and GMP, completely blocked the decrease of D1 receptor mRNA by extracellular cAMP, but only partially blocked the decrease induced by extracellular AMP. Levamisole, an inhibitor of tissue non-specific alkaline phosphatase, completely blocked the AMP-induced decrease of D1 receptor mRNA. The extracellular cAMP, AMP, and adenosine (ADO)-induced decrease in D1 receptor mRNA expression are mediated by A2a ADO receptor subtype. The results suggest a novel molecular mechanism linking activation of A2a ADO receptors with inhibition of D1 DA receptor expression.  相似文献   

17.
Dopamine stimulated human neuroblastoma SK-N-MC cells to accumulated cyclic AMP. The D1 agonist SKF (R)-38393 also stimulated cyclic AMP production whereas the response to dopamine was inhibited by the D1 antagonist SCH (R)-23390. Membranes from SK-N-MC cells bound the D1 ligand [125I]SCH 23982 with a Kd of 2.1 nM and a Bmax of 102 fmol/mg protein. Binding was displaced by dopamine, SKF 38393, and SCH 23390. Up to 40% of the receptors were in an agonist high affinity, guanine nucleotide-sensitive state, compared to only 6% in rat striatum. A D1 photoaffinity probe labeled a 72 kDa protein in both SK-N-MC and rat striatal membranes. Thus, SK-N-MC human neuroblastoma cells contain D1 dopamine receptors which are similar to those found in mammalian striatum, but which are more tightly coupled to adenylate cyclase. SK-N-MC cells may be a useful model to investigate the properties and regulation of D1 dopamine receptors.  相似文献   

18.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

19.
During hypoxia, extracellular adenosine levels are increased to prevent cell damage, playing a neuroprotective role mainly through adenosine A1 receptors. The aim of the present study was to analyze the effect of hypoxia in both adenosine A1 and A2A receptors endogenously expressed in C6 glioma cells. Two hours of hypoxia (5% O2) caused a significant decrease in adenosine A1 receptors. The same effect was observed at 6 h and 24 h of hypoxia. However, adenosine A2A receptors were significantly increased at the same times. These effects were not due to hypoxia-induced alterations in cells number or viability. Changes in receptor density were not associated with variations in the rate of gene expression. Furthermore, hypoxia did not alter HIF-1α expression in C6 cells. However, HIF-3α, CREB and CREM were decreased. Adenosine A1 and A2A receptor density in normoxic C6 cells treated with adenosine for 2, 6 and 24 h was similar to that observed in cells after oxygen deprivation. When C6 cells were subjected to hypoxia in the presence of adenosine deaminase, the density of receptors was not significantly modulated. Moreover, DPCPX, an A1 receptor antagonist, blocked the effects of hypoxia on these receptors, while ZM241385, an A2A receptor antagonist, was unable to prevent these changes. These results suggest that moderate hypoxia modulates adenosine receptors and cAMP response elements in glial cells, through a mechanism in which endogenous adenosine and tonic A1 receptor activation is involved.  相似文献   

20.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins for heterotrimeric G proteins. One of the best-studied RGS proteins, RGS4, accelerates the rate of GTP hydrolysis by all G(i) and G(q) alpha subunits yet has been shown to exhibit receptor selectivity. Although RGS4 is expressed primarily in brain, its effect on modulating the activity of serotonergic receptors has not yet been reported. In the present study, transfected BE(2)-C human neuroblastoma cells expressing human 5-HT(1B) receptors were used to demonstrate that RGS4 can inhibit the coupling of 5-HT(1B) receptors to cellular signals. Serotonin and sumatriptan were found to stimulate activation of extracellular signal-regulated kinase. This activation was attenuated, but not completely inhibited, by RGS4. Similar inhibition by RGS4 of the protein kinase Akt was also observed. As RGS4 is expressed at high levels in brain, these results suggest that it may play a role in regulating serotonergic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号