首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report describes the genetic organization of a euchromatic region on the third chromosome of Drosophila melanogaster extending cytologically from 68A2 to C1, an interval comprising 10 or 11 polytene chromosome bands. The gene for cytoplasmic superoxide dismutase (cSOD) maps within this interval, as does low xanthine dehydrogenase (lxd).--Recessive lethal mutations were generated within the region by ethyl methanesulfonate mutagenesis and by hybrid dysgenesis. These lethals fall into 11 functional groups, which were partially ordered by complementation with deletions having breakpoints within the region. The distribution of dysgenesis-induced mutations in the region is highly nonrandom, the majority being within a single group. The mutability of this gene is comparable to that of singed (sn), a documented "hot-spot" for P-element insertion.--One of the EMS-induced lethals, l-108, fulfills biochemical criteria expected of a hypomorphic allele of cSOD. To our knowledge this is the first such allele recovered of this gene, and it should prove very useful in an analysis of the in vivo function of cytoplasmic SOD. Indeed, it has been demonstrated that cSOD is almost certainly a vital gene.  相似文献   

2.
K C Kirkland  J P Phillips 《Gene》1987,61(3):415-419
A synthetic oligodeoxynucleotide 18-mer probe derived from the amino acid sequence of Drosophila melanogaster cytoplasmic superoxide dismutase (cSOD) was used to screen a D. melanogaster genomic library. One of the positive clones maps by in situ hybridization to position 68A8-9 on the left arm of polytene chromosome 3, the region to which cSOD mutants have previously been mapped genetically. Partial sequence analysis verifies the presence of cSOD-coding sequences in this clone and indicates that the intron structure of the Drosophila cSOD gene differs significantly from its human counterpart.  相似文献   

3.
K(+) currents in Drosophila muscles have been resolved into two voltage-activated currents (I(A) and I(K)) and two Ca(2+)-activated currents (I(CF) and I(CS)). Mutations that affect I(A) (Shaker) and I(CF) (slowpoke) have helped greatly in the analysis of these currents and their role in membrane excitability. Lack of mutations that specifically affect channels for the delayed rectifier current (I(K)) has made their genetic and functional identity difficult to elucidate. With the help of mutations in the Shab K(+) channel gene, we show that this gene encodes the delayed rectifier K(+) channels in Drosophila. Three mutant alleles with a temperature-sensitive paralytic phenotype were analyzed. Analysis of the ionic currents from mutant larval body wall muscles showed a specific effect on delayed rectifier K(+) current (I(K)). Two of the mutant alleles contain missense mutations, one in the amino-terminal region of the channel protein and the other in the pore region of the channel. The third allele contains two deletions in the amino-terminal region and is a null allele. These observations identity the channels that carry the delayed rectifier current and provide an in vivo physiological role for the Shab-encoded K(+) channels in Drosophila. The availability of mutations that affect I(K) opens up possibilities for studying I(K) and its role in larval muscle excitability.  相似文献   

4.
We report here the isolation of a tandem duplication of a small region of the third chromosome of Drosophila melanogaster containing the Cu-Zn superoxide dismutase (cSOD) gene. This duplication is associated with a dosage-dependent increase in cSOD activity. The biological consequences of hypermorphic levels of cSOD in genotypes carrying this duplication have been investigated under diverse conditions of oxygen stress imposed by acute exposure to ionizing radiation, chronic exposure to paraquat, and the normoxia of standard laboratory culture. We find that a 50% increase in cSOD activity above the normal diploid level confers increased resistance to ionizing radiation and, in contrast, confers decreased resistance to the superoxide-generating agent paraquat. The duplication is associated with a minor increase in adult life-span under conditions of normoxia. These results reveal important features of the biological function of cSOD within the context of the overall oxygen defense system of Drosophila.  相似文献   

5.
Drosophila mutants have played an important role in elucidating the physiologic function of genes. Large-scale projects have succeeded in producing mutations in a large proportion of Drosophila genes. Many mutant fly lines have also been produced through the efforts of individual laboratories over the past century. In an effort to make some of these mutants more useful to the research community, we systematically mapped a large number of mutations affecting genes in the proximal half of chromosome arm 2L to more precisely defined regions, defined by deficiency intervals, and, when possible, by individual complementation groups. To further analyze regions 36 and 39-40, we produced 11 new deficiencies with gamma irradiation, and we constructed 6 new deficiencies in region 30-33, using the DrosDel system. trans-heterozygous combinations of deficiencies revealed 5 additional functions, essential for viability or fertility.  相似文献   

6.
Mohr SE  Gelbart WM 《Genetics》2002,162(1):165-176
Understanding the function of each gene in the genome of a model organism such as Drosophila melanogaster is an important goal. The development of improved methods for uncovering the mutant phenotypes of specific genes can accelerate achievement of this goal. The P[wHy] hybrid transposable element can be used to generate nested sets of precisely mapped deletions in a given region of the Drosophila genome. Here we use the P[wHy] method to generate overlapping, molecularly defined deletions from a set of three P[wHy] insertions in the 54E-F region of chromosome 2. Deletions that span a total of 0.5 Mb were identified and molecularly mapped precisely. Using overlapping deletions, the mutant phenotypes of nine previously uncharacterized genes in a 101-kb region were determined, including identification of new loci required for viability and female fertility. In addition, the deletions were used to molecularly map previously isolated lethal mutations. Thus, the P[wHy] method provides an efficient method for systematically determining the phenotypes of genes in a given region of the fly genome.  相似文献   

7.
8.
Bier E  Bodmer R 《Gene》2004,342(1):1-11
A variety of studies that are currently underway may validate the fruit fly as an in vivo model for analyzing genes involved in cardiac function. Many mutations in conserved genetic pathways have been found, including those controlling development and physiology. Because homologous genes control early developmental events as well as functional components of the Drosophila and vertebrate hearts, the fly is the simplest existing model system that can be used to assay genes involved in human congenital heart disease (CHD). The wide variety of genetic tools available to Drosophila researchers offers many technical advantages for rapidly screening through large numbers of candidate genes. Thus, an important future and long-term direction is likely to be the use of Drosophila as a vehicle for analyzing polygenic traits as an aid in human genetics. One can anticipate a time in the not too distant future when mutant lines exist for every gene in vertebrate systems, such as mice and zebrafish. However, one of the enduring problems that will not easily be addressed by such resources will be the tracking of complex traits defined by polygenic variants. For this level of genetic analysis, simple genetic model systems including yeast, Caenorhabditis elegans, and Drosophila melanogaster will undoubtedly play a crucial ongoing role. Of them, Drosophila will be critical for examining gene networks involved in organogenesis and is clearly the system of choice for studying cardiac development, function and aging, since among the simple genetic models it is the only one with a fluid pumping heart.  相似文献   

9.
A neuroanatomical screening of a collection of P-element mutagenized flies has been carried out with the aim of finding new mutants affecting the optic lobe of the adult brain in Drosophila melanogaster. We have identified a new gene that is involved in the development of the adult axon array in the optic ganglia and in the ommatidia assembly. We have named this locus visual system disorganizer (vid). Reversional mutagenesis demonstrated that the vid mutant was the result of a P-element insertion in the Drosophila genome and allowed us to generate independent alleles, some of which resulted in semilethality, like the vid original mutant, while the others were completely lethal. A genetic somatic mosaic analysis indicated that the vid gene is required in the eye for its normal development by inductive effects. This analysis also suggests an inductive effect of the vid gene on the distal portion of the optic lobe, particularly the lamina and the first optic chiasma. Moreover, the absence of mutant phenotype in the proximal region of the optic ganglia, including the medulla, the second optic chiasma, and the lobula complex underlying mosaic eyes, is suggestive of an autonomously acting mechanism of the vid gene in the optic lobe. The complete or partial lethality generated by different mutations at the vid locus suggests that this gene's role may not be limited to the visual system, but may also affect a vital function during Drosophila development.  相似文献   

10.
Oh SW  Kingsley T  Shin HH  Zheng Z  Chen HW  Chen X  Wang H  Ruan P  Moody M  Hou SX 《Genetics》2003,163(1):195-201
With the completion of the nucleotide sequences of several complex eukaryotic genomes, tens of thousands of genes have been predicted. However, this information has to be correlated with the functions of those genes to enhance our understanding of biology and to improve human health care. The Drosophila transposon P-element-induced mutations are very useful for directly connecting gene products to their biological function. We designed an efficient transposon P-element-mediated gene disruption procedure and performed genetic screening for single P-element insertion mutations, enabling us to recover 2500 lethal mutations. Among these, 2355 are second chromosome mutations. Sequences flanking >2300 insertions that identify 850 different genes or ESTs (783 genes on the second chromosome and 67 genes on the third chromosome) have been determined. Among these, 455 correspond to genes for which no lethal mutation has yet been reported. The Drosophila genome is thought to contain approximately 3600 vital genes; 1400 are localized on the second chromosome. Our mutation collection represents approximately 56% of the second chromosome vital genes and approximately 24% of the total vital Drosophila genes.  相似文献   

11.
12.
An appreciable fraction of the Drosophila melanogaster genome is dedicated to male fertility. One approach to characterizing this subset of the genome is through the study of male-sterile mutations. We studied the relation between vital and male-fertility genes in three large autosomal regions that were saturated for lethal and male-sterile mutations. The majority of male-sterile mutations affect genes that are exclusively expressed in males. These genes are required only for male fertility, and several mutant alleles of each such gene were encountered. A few male-sterile mutations were alleles of vital genes that are expressed in both males and females. About one-fifth of the genes in Drosophila melanogaster show male-specific expression in adults. Although some earlier studies found a paucity of genes on the X chromosome showing male-biased expression, we did not find any significant differences between the X chromosome and the autosomes either in the relative frequencies of mutations to male sterility or in the frequencies of genes with male-specific expression in adults. Our results suggest that as much as 25% of the Drosophila genome may be dedicated to male fertility.  相似文献   

13.
The 73AD salivary chromosome region of Drosophila melanogaster was subjected to mutational analysis in order to (1) generate a collection of chromosome breakpoints that would allow a correlation between the genetic, cytological and molecular maps of the region and (2) define the number and gross organization of complementation groups within this interval. Eighteen complementation groups were defined and mapped to the 73A2-73B7 region, which is comprised of 17 polytene bands. These complementation groups include the previously known scarlet (st), transformer (tra) and Dominant temperature-sensitive lethal-5 (DTS-5) genes, as well as 13 new recessive lethal complementation groups and one male and female sterile locus. One of the newly identified lethal complementation groups corresponds to the molecularly identified abl locus, and another gene is defined by mutant alleles that exhibit an interaction with the abl mutants. We also recovered several mutations in the 73C1-D1.2 interval, representing two lethal complementation groups, one new visible mutant, plucked (plk), and a previously known visible, dark body (db). There is no evidence of a complex of sex determination genes in the region near tra.  相似文献   

14.
Brooks IM  Felling R  Kawasaki F  Ordway RW 《Genetics》2003,164(1):163-171
Our previous genetic analysis of synaptic mechanisms in Drosophila identified a temperature-sensitive paralytic mutant of the voltage-gated calcium channel alpha1 subunit gene, cacophony (cac). Electrophysiological studies in this mutant, designated cac(TS2), indicated cac encodes a primary calcium channel alpha1 subunit functioning in neurotransmitter release. To further examine the functions and interactions of cac-encoded calcium channels, a genetic screen was performed to isolate new mutations that modify the cac(TS2) paralytic phenotype. The screen recovered 10 mutations that enhance or suppress cac(TS2), including second-site mutations in cac (intragenic modifiers) as well as mutations mapping to other genes (extragenic modifiers). Here we report molecular characterization of three intragenic modifiers and examine the consequences of these mutations for temperature-sensitive behavior, synaptic function, and processing of cac pre-mRNAs. These mutations may further define the structural basis of calcium channel alpha1 subunit function in neurotransmitter release.  相似文献   

15.
Deletions in the Drosophila minichromosome Dp1187 were used to investigate the genetic interactions of trans-acting genes with the centromere. Mutations in several genes known to have a role in chromosome inheritance were shown to have dominant effects on the stability of minichromosomes with partially defective centromeres. Heterozygous mutations in the ncd and klp3A kinesin-like protein genes strongly reduced the transmission of minichromosomes missing portions of the genetically defined centromere, but had little effect on the transmission of minichromosomes with intact centromeres. Using this approach, ncd and klp3A were shown to require only the centromeric region of the chromosome for their roles in chromosome segregation. Increased gene dosage also affected minichromosome transmission and was used to demonstrate that the nod kinesin-like protein gene interacts genetically with the centromere, in addition to interacting with extracentromeric regions as demonstrated previously. The results presented in this study strongly suggest that dominant genetic interactions between mutations and centromere-defective minichromosomes could be used effectively to identify novel genes necessary for centromere function.  相似文献   

16.
Reverse genetic analysis in Drosophila has been greatly aided by a growing collection of lethal P transposable element insertions that provide molecular tags for the identification of essential genetic loci. However, because the screens performed to date primarily have generated autosomal P-element insertions, this collection has not been as useful for performing reverse genetic analysis of X-linked genes. We have designed a reverse genetic screen that takes advantage of the hemizygosity of the X chromosome in males together with a cosmid-based transgene that serves as an autosomally linked duplication of a small region of the X chromosome. The efficacy and efficiency of this method is demonstrated by the isolation of mutations in Drosophila homologues of two well-studied genes, the human Neurofibromatosis 2 tumor suppressor and the yeast CDC42 gene. The method we describe should be of general utility for the isolation of mutations in other X-linked genes, and should also provide an efficient method for the isolation of new alleles of existing X-linked or autosomal mutations in Drosophila.  相似文献   

17.
Recent data from clinical and mammalian genetic studies indicate that COL4A1 mutations manifest with basement membrane defects that result in muscle weakness, cramps, contractures, dystrophy and atrophy. In-depth studies of mutant COL4A1-associated muscle phenotype, however, are lacking and significant details of the muscle-specific pathomechanisms remain unknown. In this study, we have used a comprehensive set of Drosophila col4a1 and col4a2 mutants and a series of genetic and mutational analyses, gene, protein expression, and immunohistochemistry experiments in order to establish a Drosophila model and address some of these questions. The Drosophila genome contains two type IV collagen genes, col4a1 and col4a2. Mutant heterozygotes of either gene are viable and fertile, whereas homozygotes are lethal. In complementation analysis of all known mutants of the locus and a complementation matrix derived from these data we have identified the dominant lesions within the col4a1, but not within the col4a2 gene. Expression of a col4a1 transgene partially rescued the dominant and recessive mutant col4a1 alleles but not the col4a2 mutations that were all recessive. Partial complementation suggested that col4a1 gene mutations have strong antimorph effect likely due to the incorporation of the mutant protein into the triple helix. In col4a1 mutants, morphological changes of the oviduct muscle included severe myopathy with centronuclear myofibers leading to gradual development of female sterility. In larval body wall muscles ultrastructural changes included disturbance of A and I bands between persisting Z bands. In the most severely affected DTS-L3 mutant, we have identified four missense mutations within the coding region of the col4a1 gene two of which affected the Y within the Gly-X-Y unit and a 3' UTR point mutation. In conclusion, our Drosophila mutant series may serve as an effective model to uncover the mechanisms by which COL4A1 mutations result in compromised myofiber-basement membrane interactions and aberrant muscle function.  相似文献   

18.
To assess the potential of Drosophila to analyze clinically graded aspects of human disease, we developed a transgenic fly model to characterize Presenilin (PS) gene mutations that cause early-onset familial Alzheimer's disease (FAD). FAD exhibits a wide range in severity defined by ages of onset from 24 to 65 years . PS FAD mutants have been analyzed in mammalian cell culture, but conflicting data emerged concerning correlations between age of onset and PS biochemical activity . Choosing from over 130 FAD mutations in Presenilin-1, we introduced 14 corresponding mutations at conserved residues in Drosophila Presenilin (Psn) and assessed their biological activity in transgenic flies by using genetic, molecular, and statistical methods. Psn FAD mutant activities were tightly linked to their age-of-onset values, providing evidence that disease severity in humans primarily reflects differences in PS mutant lesions rather than contributions from unlinked genetic or environmental modifiers. Our study establishes a precedent for using transgenic Drosophila to study clinical heterogeneity in human disease.  相似文献   

19.
M. J. Blacketer  P. Madaule    A. M. Myers 《Genetics》1995,140(4):1259-1275
A genetic analysis was undertaken to investigate the mechanisms controlling cellular morphogenesis in Saccharomyces cerevisiae. Sixty mutant strains exhibiting abnormally elongated cell morphology were isolated. The cell elongation phenotype in at least 26 of the strains resulted from a single recessive mutation. These mutations, designated generically elm (elongated morphology), defined 14 genes; two of these corresponded to the previously described genes GRR1 and CDC12. Genetic interactions between mutant alleles suggest that several ELM genes play roles in the same physiological process. The cell and colony morphology and growth properties of many elm mutant strains are similar to those of wild-type yeast strains after differentiation in response to nitrogen limitation into the pseudohyphal form. Each elm mutation resulted in multiple characteristics of pseudohyphal cells, including elongated cell shape, delay in cell separation, simultaneous budding of mother and daughter cells, a unipolar budding pattern, and/or the ability to grow invasively beneath the agar surface. Mutations in 11 of the 14 ELM gene loci potentiated pseudohyphal differentiation in nitrogen-limited medium. Thus, a subset of the ELM genes are likely to affect control or execution of a defined morphologic differentiation pathway in S. cerevisiae.  相似文献   

20.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号