首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
X P Kong  R Onrust  M O'Donnell  J Kuriyan 《Cell》1992,69(3):425-437
The crystal structure of the beta subunit (processivity factor) of DNA polymerase III holoenzyme has been determined at 2.5 A resolution. A dimer of the beta subunit (M(r) = 2 x 40.6 kd, 2 x 366 amino acid residues) forms a ring-shaped structure lined by 12 alpha helices that can encircle duplex DNA. The structure is highly symmetrical, with each monomer containing three domains of identical topology. The charge distribution and orientation of the helices indicate that the molecule functions by forming a tight clamp that can slide on DNA, as shown biochemically. A potential structural relationship is suggested between the beta subunit and proliferating cell nuclear antigen (PCNA, the eukaryotic polymerase delta [and epsilon] processivity factor), and the gene 45 protein of the bacteriophage T4 DNA polymerase.  相似文献   

3.
The bacteriophage T4 DNA polymerase holoenzyme, consisting of the DNA polymerase (gp43), the sliding clamp (gp45), and the clamp loader (gp44/62), is loaded onto DNA in an ATP-dependent, multistep reaction. The trimeric, ring-shaped gp45 is loaded onto DNA such that the DNA passes through the center of the ring. gp43 binds to this complex, thereby forming a topological link with the DNA and increasing its processivity. Using stopped-flow fluorescence-resonance energy transfer, we have investigated opening and closing of the gp45 ring during the holoenzyme assembly process. Two amino acids that lie on opposite sides of the gp45 subunit interface, W91 and V162C labeled with coumarin, were used as the fluorescence donor and acceptor, respectively. Free in solution, gp45 has two closed subunit interfaces with W91 to V162-coumarin distances of 19 A and one open subunit interface with a W91 to V162C-coumarin distance of 40 A. Making the assumption that the distance across the two closed subunit interfaces is unchanged during the holoenzyme assembly process, we have found that the distance across the open subunit interface is first increased to greater than 45 A and is then decreased to 30 A during a 10-step assembly mechanism. The gp45 ring is not completely closed in the holoenzyme complex, consistent with previous evidence suggesting that the C-terminus of gp43 is inserted into the gp45 subunit interface. Unexpectedly, ATP-hydrolysis events are coupled to only a fraction of the total distance change, with conformational changes linked to binding DNA and gp43 coupled to the majority of the total distance change. Using the nonhydrolyzable ATP analogue ATP-gamma-S results in formation of a nonproductive gp45 x gp44/62 complex; however, adding an excess of ATP to this nonproductive complex results in rapid ATP/ATP-gamma-S exchange to yield a productive gp45 x gp44/62 complex within seconds.  相似文献   

4.
Dynamics of DNA-tracking by two sliding-clamp proteins.   总被引:4,自引:1,他引:3       下载免费PDF全文
  相似文献   

5.
6.
The proliferating cell nuclear antigen (PCNA) is now recognized as one of the key proteins in DNA metabolic events because of its direct interactions with many proteins involved in important cellular processes. We have determined the crystal structure of PCNA from a hyperthermophilic archaeon, Pyrococcus furiosus (pfuPCNA), at 2.1 A resolution. pfuPCNA forms a toroidal, ring-shaped structure consisting of homotrimeric molecules, which is also observed in the PCNA crystals from human and yeast. The overall structure of pfuPCNA is highly conserved with other PCNA proteins, as well as with the bacterial ss clamp and the bacteriophage gp45. This result shows that the three-dimensional structure of the sliding clamp is conserved in the three domains of life. pfuPCNA has two remarkable features compared with the human and yeast PCNA molecules: it has more ion pairs and fewer intermolecular main chain hydrogen bonds. The former may contribute to the thermal stability of pfuPCNA, and the latter may be the cause of the stimulatory effect of pfuPCNA on the DNA synthesizing activity of P. furiosus DNA polymerases in the absence of the clamp loader replication factor C in vitro.  相似文献   

7.
8.
Bunting KA  Roe SM  Pearl LH 《The EMBO journal》2003,22(21):5883-5892
Y-family DNA polymerases can extend primer strands across template strand lesions that stall replicative polymerases. The poor processivity and fidelity of these enzymes, key to their biological role, requires that their access to the primer-template junction is both facilitated and regulated in order to minimize mutations. These features are believed to be provided by interaction with processivity factors, beta-clamp or proliferating cell nuclear antigen (PCNA), which are also essential for the function of replicative DNA polymerases. The basis for this interaction is revealed by the crystal structure of the complex between the 'little finger' domain of the Y-family DNA polymerase Pol IV and the beta-clamp processivity factor, both from Escherichia coli. The main interaction involves a C-terminal peptide of Pol IV, and is similar to interactions seen between isolated peptides and other processivity factors. However, this first structure of an entire domain of a binding partner with an assembled clamp reveals a substantial secondary interface, which maintains the polymerase in an inactive orientation, and may regulate the switch between replicative and Y-family DNA polymerases in response to a template strand lesion.  相似文献   

9.
The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase domain of the T7 gp4, but other important motifs are missing. TWINKLE is not an active primase in vitro and the functional role of the N-terminal region has remained elusive. In this report, we demonstrate that the N-terminal part of TWINKLE is required for efficient binding to single-stranded DNA. Truncations of this region reduce DNA helicase activity and mitochondrial DNA replisome processivity. We also find that the gp4 and TWINKLE are functionally distinct. In contrast to the phage protein, TWINKLE binds to double-stranded DNA. Moreover, TWINKLE forms stable hexamers even in the absence of Mg2+ or NTPs, which suggests that an accessory protein, a helicase loader, is needed for loading of TWINKLE onto the circular mtDNA genome.  相似文献   

10.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA.  相似文献   

11.
Speed and processivity of replicative DNA polymerases can be enhanced via coupling to a sliding clamp. Due to the closed ring shape of the clamp, a clamp loader protein, belonging to the AAA+ class of ATPases, needs to open the ring-shaped clamp before loading it to DNA. Here, we developed real-time fluorescence assays to study the clamp (PCNA) and the clamp loader (RFC) from the mesophilic archaeon Methanosarcina acetivorans. Unexpectedly, we discovered that RFC can assemble a PCNA ring from monomers in solution. A motion-based DNA polymerization assay showed that the PCNA assembled by RFC is functional. This PCNA assembly activity required the ATP-bound conformation of RFC. Our work demonstrates a reverse-chaperoning activity for an AAA+ protein that can act as a template for the assembly of another protein complex.  相似文献   

12.
Numerous studies of the impact of accessory proteins upon the fidelity of DNA synthesis have provided a complex and sometimes discordant picture. We previously described such an analysis conducted in vitro using various bacteriophage RB69 gp43 mutator DNA polymerases with or without the accessory proteins gp32 (which binds single-stranded DNA) plus gp45/44/62 (processivity clamp and its loaders). Mutations were scored at many sites in the lacZalpha mutation reporter sequence. Unexpectedly, the accessory proteins sometimes decreased and sometimes increased fidelity at a handful of specific sites. Here, we enlarge our analysis with one particular mutator polymerase compromised in both insertion accuracy and proofreading and also extend the analysis to reactions supplemented only with gp32 or only with gp45/44/62. An overall 1.56-fold increase in mutation frequencies was produced by adding single or multiple accessory proteins and was driven mainly by increased T(template)*G(primer) mispairs. Evidence was found for many additional sites where the accessory proteins influence fidelity, indicating the generality of the effect. Thus, accessory proteins contribute to the site-specific variability in mutation rates characteristically seen in mutational spectra.  相似文献   

13.
The replicative helicase for bacteriophage T4 is gp41, which is a ring-shaped hexameric motor protein that achieves unwinding of dsDNA by translocating along one strand of ssDNA while forcing the opposite strand to the outside of the ring. While much study has been dedicated to the mechanism of binding and translocation along the ssDNA strand encircled by ring-shaped helicases, relatively little is known about the nature of the interaction with the opposite, ‘occluded’ strand. Here, we investigate the interplay between the bacteriophage T4 helicase gp41 and the ss/dsDNA fork by measuring, at the single-molecule level, DNA unwinding events on stretched DNA tethers in multiple geometries. We find that gp41 activity is significantly dependent on the geometry and tension of the occluded strand, suggesting an interaction between gp41 and the occluded strand that stimulates the helicase. However, the geometry dependence of gp41 activity is the opposite of that found previously for the E. coli hexameric helicase DnaB. Namely, tension applied between the occluded strand and dsDNA stem inhibits unwinding activity by gp41, while tension pulling apart the two ssDNA tails does not hinder its activity. This implies a distinct variation in helicase-occluded strand interactions among superfamily IV helicases, and we propose a speculative model for this interaction that is consistent with both the data presented here on gp41 and the data that had been previously reported for DnaB.  相似文献   

14.
Picha KM  Ahnert P  Patel SS 《Biochemistry》2000,39(21):6401-6409
Many helicases assemble into ring-shaped hexamers and bind DNA in their central channel. This raises the question as to how the DNA gets into the central channel to form a topologically linked complex. We have used the presteady-state stopped-flow kinetic method and protein fluorescence changes to investigate the mechanism of single-stranded DNA (ssDNA) binding to the bacteriophage T7 helicase-primase, gp4A'. We have found that the kinetics of 30-mer ssDNA binding to a preformed gp4A' hexamer in the presence of both Mg-dTMP-PCP and Mg-dTTP are similar, indicating that Mg-dTTP binding is sufficient and hydrolysis is not necessary for efficient DNA binding. Multiple transient changes in gp4A' fluorescence revealed a four-step mechanism for DNA binding with Mg-dTTP. These transient changes were analyzed by global fitting and kinetic simulation to determine the intrinsic rate constants of this four-step mechanism. The initial steps, including the bimolecular encounter of the DNA with the helicase and a subsequent conformational change, were fast. We propose that these initial steps of DNA binding occur at a readily accessible site, which is likely to be on the outside of the hexamer ring. The binding of the 30-mer ssDNA at this loading site is followed by slower conformational changes that allow the DNA to transit into the central channel of gp4A' via a ring-opening or threading pathway.  相似文献   

15.
Bacteriophage Mu is a double-stranded DNA phage that consists of an icosahedral head, a contractile tail with baseplate and six tail fibers, similar to the well-studied T-even phages. The baseplate of bacteriophage Mu, which recognizes and attaches to a host cell during infection, consists of at least eight different proteins. The baseplate protein, gp44, is essential for bacteriophage Mu assembly and the generation of viable phages. To investigate the role of gp44 in baseplate assembly and infection, the crystal structure of gp44 was determined at 2.1A resolution by the multiple isomorphous replacement method. The overall structure of the gp44 trimer is similar to that of the T4 phage gp27 trimer, which forms the central hub of the T4 baseplate, although these proteins share very little primary sequence homology. Based on these data, we confirm that gp44 exists as a trimer exhibiting a hub-like structure with an inner diameter of 25A through which DNA can presumably pass during infection. The molecular surface of the gp44 trimer that abuts the host cell membrane is positively charged, and it is likely that Mu phage interacts with the membrane through electrostatic interactions mediated by gp44.  相似文献   

16.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

17.
Processive DNA replication requires the loading of a multisubunit ring-shaped protein complex, known as a sliding or processivity clamp, onto the primer-template (p/t) DNA. This clamp then binds to the replication polymerase to form a processive polymerase holoenzyme. The processivity of the holoenzyme derives from the topological properties of the clamp, which encircles the DNA without actually binding to it. Multisubunit complexes known as clamp-loaders utilize ATP to drive the placement of this ring around the DNA. To further understand the role of ATP binding and hydrolysis in driving clamp-loading in the DNA replication system of bacteriophage T4, we report the results of a series of presteady-state and steady-state kinetic ATPase experiments involving the various components of the reconstituted system. The results obtained are consistent with a mechanism in which a slow step, which involves the binary ATP-bound clamp-clamp loader complex, activates this complex and permits p/t DNA to bind and stimulate ATP hydrolysis. ATP hydrolysis itself, as well as the subsequent (after clamp-loading) dissociation of the clamp-loader and the slippage of the loaded clamp from the p/t DNA construct, are shown to be fast steps. A second slow step occurs after ATP hydrolysis. This step involves the dissociated clamp loader complex and may reflect ADP release. Only one molecule of ATP is hydrolyzed per clamp-loading event. Rate constants for each step, and an overall reaction mechanism for the T4 clamp-loading system, are derived from these data and from other results in the literature. The principles that emerge fit into a general framework that can apply to many biological processes involving ATP-driven reaction cycles.  相似文献   

18.
The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD. gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions.  相似文献   

19.
The sliding clamps of bacteriophage T4 (gp45), Escherichia coli (beta clamp), and yeast (PCNA) are required for processive DNA synthesis by their cognate DNA polymerases. The X-ray crystal structures of all three of these clamps have been shown to be closed, circular complexes. This paper reports investigations of the solution structure of bacteriophage T4 gp45 by analytical ultracentrifugation, fluorescence, and hydrodynamic modeling. Mutants of gp45 with inter- and intrasubunit disulfide bonds were created to alter the solution structure of gp45, with additional mutagenesis used to investigate the importance of the proline-rich loop region found between the two domains of each gp45 monomer. The wild-type gp45 trimer assembles from monomers cooperatively with a dissociation constant of 0.21 microM2 and values between 0.088 and 0. 32 microM2 for the mutants. Velocity ultracentrifugation experiments showed that wild-type gp45 possesses a sedimentation coefficient strongly dependent on concentration, typical of asymmetric or elongated molecules, that when extrapolated to zero concentration yields a sedimentation coefficient of 4.0 S. The loop and the disulfide mutants exhibited sedimentation coefficients with little concentration dependence, typical of symmetric or spherical molecules, that when extrapolated to zero concentration yielded sedimentation coefficients of 4.4-4.8 S. The lower sedimentation coefficient in the former case is consistent with wild-type gp45 being more asymmetric or elongated than the mutant forms. Fluorescence-resonance energy-transfer experiments were used to measure the distance between two amino acids (W91 and V162C-coumarin) on opposite sides of the gp45 subunit interface. For an intrasubunit disulfide mutant, the distance between these two amino acids was determined to be 19 A (14 A in the X-ray crystal structure), consistent with a closed complex. For the mutants without intrasubunit disulfides, the efficiency of fluorescence-resonance energy transfer was in accord with a model of gp45 being an open complex composed of two closed subunit interfaces and a third open interface separated by a distance of 35-38 A. The collective data supplemented with hydrodynamic modeling were consistent with gp45 subunit separation achieved within the plane of the gp45 ring.  相似文献   

20.
Exo1-mediated resection of DNA double-strand break ends generates 3′ single-stranded DNA overhangs required for homology-based DNA repair and activation of the ATR-dependent checkpoint. Despite its critical importance in inducing the overall DNA damage response, the mechanisms and regulation of the Exo1 resection pathway remain incompletely understood. Here, we identify the ring-shaped DNA clamp PCNA as a new factor in the Exo1 resection pathway. Using mammalian cells, Xenopus nuclear extracts and purified proteins, we show that after DNA damage, PCNA loads onto double-strand breaks and promotes Exo1 damage association through direct interaction with Exo1. By tethering Exo1 to the DNA substrate, PCNA confers processivity to Exo1 in resection. This role of PCNA in DNA resection is analogous to its function in DNA replication where PCNA serves as a processivity co-factor for DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号