首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J B Virgin  J P Bailey 《Genetics》1998,149(3):1191-1204
Homologous recombination is increased during meiosis between DNA sequences at the same chromosomal position (allelic recombination) and at different chromosomal positions (ectopic recombination). Recombination hotspots are important elements in controlling meiotic allelic recombination. We have used artificially dispersed copies of the ade6 gene in Schizosaccharomyces pombe to study hotspot activity in meiotic ectopic recombination. Ectopic recombination was reduced 10-1000-fold relative to allelic recombination, and was similar to the low frequency of ectopic recombination between naturally repeated sequences in S. pombe. The M26 hotspot was active in ectopic recombination in some, but not all, integration sites, with the same pattern of activity and inactivity in ectopic and allelic recombination. Crossing over in ectopic recombination, resulting in chromosomal rearrangements, was associated with 35-60% of recombination events and was stimulated 12-fold by M26. These results suggest overlap in the mechanisms of ectopic and allelic recombination and indicate that hotspots can stimulate chromosomal rearrangements.  相似文献   

2.
3.
4.
5.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.Key words: Mek1, meiotic recombination, phosphorylation, Rdh54, Mus81  相似文献   

6.
Baur M  Hartsuiker E  Lehmann E  Ludin K  Munz P  Kohli J 《Genetics》2005,169(2):551-561
The meiotic recombination hot spot ura4A (formerly ura4-aim) of Schizosaccharomyces pombe was observed at the insertion of the ura4+ gene 15 kb centromere-proximal to ade6 on chromosome III. Crosses heterozygous for the insertion showed frequent conversion at the heterology with preferential loss of the insertion. This report concerns the characterization of 12 spontaneous ura4A mutants. A gradient of conversion ranging from 18% at the 5' end to 6% at the 3' end was detected. A novel phenomenon also was discovered: a mating-type-related bias of conversion. The allele entering with the h+ parent acts preferentially as the acceptor for conversion (ratio of 3:2). Tetrad analysis of two-factor crosses showed that heteroduplex DNA is predominantly asymmetrical, enters from the 5' end, and more often than not covers the entire gene. Restoration repair of markers at the 5' end was inferred. Random spore analyses of two-factor crosses and normalization of prototroph-recombinant frequencies to physical distance led to the demonstration of map expansion: Crosses involving distant markers yielded recombinant frequencies higher than the sum of the frequencies measured in the subintervals. Finally, marker effects on recombination were defined for two of the ura4A mutations.  相似文献   

7.
Davis L  Smith GR 《Genetics》2006,174(1):167-177
Chromosome architecture undergoes extensive, programmed changes as cells enter meiosis. A highly conserved change is the clustering of telomeres at the nuclear periphery to form the "bouquet" configuration. In the fission yeast Schizosaccharomyces pombe the bouquet and associated nuclear movement facilitate initial interactions between homologs. We show that Bqt2, a meiosis-specific protein required for bouquet formation, is required for wild-type levels of homolog pairing and meiotic allelic recombination. Both gene conversion and crossing over are reduced and exhibit negative interference in bqt2Delta mutants, reflecting reduced homolog pairing. While both the bouquet and nuclear movement promote pairing, only the bouquet restricts ectopic recombination (that between dispersed repetitive DNA). We discuss mechanisms by which the bouquet may prevent deleterious translocations by restricting ectopic recombination.  相似文献   

8.
9.
Grishchuk AL  Kohli J 《Genetics》2003,165(3):1031-1043
The genome of Schizosaccharomyces pombe contains five genes that code for proteins with sequence similarity to the Escherichia coli recombination protein RecA: rad51+, rhp55+, rhp57+, rlp1+, and dmc1+. We analyzed the effect of deletion of each of these genes on meiotic recombination and viability of spores. Meiotic recombination levels were different from wild type in all recA-related mutants in several genetic intervals, suggesting that all five RecA homologs of S. pombe are required for normal levels of meiotic recombination. Spore viability was reduced in rad51, rhp55, and rhp57 mutants, but not in rlp1 and dmc1. It is argued that reduction of crossover is not the only cause for the observed reduction of spore viability. Analysis of double and triple mutants revealed that Rad51 and Dmc1 play major and partially overlapping roles in meiotic recombination, while Rhp55, Rhp57, and Rlp1 play accessory roles. Remarkably, deletion of Rlp1 decreases the frequency of intergenic recombination (crossovers), but increases intragenic recombination (gene conversion). On the basis of our results, we present a model for the involvement of five RecA-like proteins of S. pombe in meiotic recombination and discuss their respective roles.  相似文献   

10.
11.
12.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.  相似文献   

13.
14.
Certain genomic loci, termed hot spots, are predisposed to undergo genetic recombination during meiosis at higher levels relative to the rest of the genome. The factors that specify hot-spot potential are not well understood. The M26 hot spot of Schizosaccharomyces pombe is dependent on certain trans activators and a specific nucleotide sequence, which can function as a hot spot in a position- and orientation-independent fashion within ade6. In this report we demonstrate that a linear element (LE) component, Rec10, has a function that is required for activation of some, but not all, M26-containing hot spots and from this we propose that, with respect to hot-spot activity, there are three classes of M26-containing sequences. We demonstrate that the localized sequence context in which the M26 heptamer is embedded is a major factor governing whether or not this Rec10 function is required for full hot-spot activation. Furthermore, we show that the rec10-144 mutant, which is defective in full activation of ade6-M26, but proficient for activation of other M26-containing hot spots, is also defective in the formation of LEs, suggesting an intimate link between higher-order chromatin structure and local influences on hot-spot activation.  相似文献   

15.
16.
L Wu  P Russell 《The EMBO journal》1997,16(6):1342-1350
In Schizosaccharomyces pombe, the activity of the M-phase-inducing Cdc2/Cdc13 cyclin-dependent kinase is inhibited by Wee1 and Mik1 tyrosine kinases, and activated by Cdc25 and Pyp3 tyrosine phosphatases. Cdc2/Cdc13 activity is also indirectly regulated by the approximately 70 kDa Nim1 (Cdrl) serine/threonine kinase, which promotes mitosis by inhibiting Wee1 via direct phosphorylation. To understand better the function and regulation of Nim1, the yeast two-hybrid system was used to isolate S.pombe cDNA clones encoding proteins that interact with Nim1. Sixteen of the 17 cDNA clones were derived from the same gene, named nif1 + (nim1 interacting factor-1). Nif1 is a novel approximately 75 kDa protein containing a leucine zipper motif. The Nif1-Nim1 interaction requires a small region of Nim1 that immediately follows the N-terminal catalytic domain. This region is required for Nim1 activity both in vivo and in vitro. delta nif1 mutants are approximately 10% smaller than wild type, indicating that Nif1 is involved in inhibiting the onset of mitosis. Consistent with this proposal, overproduction of Nif1 was found to cause a cell elongation phenotype that is very similar to delta nim1 mutants. Nif1 overproduction causes cell cycle arrest in cells that are partly defective for Cdc25 activity, but has no effect in delta nim1 or delta wee1 mutants. Nif1 also inhibits Nim1-mediated phosphorylation of Wee1 in an insect cell expression system. These observations strongly suggest that Nif1 negatively regulates the onset of mitosis by a novel mechanism, namely inhibiting Nim1 kinase.  相似文献   

17.
18.
We have determined the structural organization and functional roles of centromere-specific DNA sequence repeats in cen1, the centromere region from chromosome I of the fission yeast Schizosaccharomyces pombe. cen1 is composed of various classes of repeated sequences designated K', K"(dgl), L, and B', arranged in a 34-kb inverted repeat surrounding a 4- to 5-kb nonhomologous central core. Artificial chromosomes containing various portions of the cen1 region were constructed and assayed for mitotic and meiotic centromere function in S. pombe. Deleting K' and L from the distal portion of one arm of the inverted repeat had no effect on mitotic centromere function but resulted in greatly increased precocious sister chromatid separation in the first meiotic division. A centromere completely lacking K' and L, but containing the central core, one copy of B' and K" in one arm, and approximately 2.5 kb of the core-proximal portion of B' in the other arm, was also fully functional mitotically but again did not maintain sister chromatid attachment in meiosis I. However, deletion of K" from this minichromosome resulted in complete loss of centromere function. Thus, one copy of at least a portion of the K" (dgl) repeat is absolutely required but is not sufficient for S. pombe centromere function. The long centromeric inverted-repeat region must be relatively intact to maintain sister chromatid attachment in meiosis I.  相似文献   

19.
In the fission yeast Schizosaccharomyces pombe, the gld1 + gene encoding glycerol dehydrogenase is repressed by glucose and induced by ethanol and 1-propanol. The promoter region of gld1 + was cloned into a multicopy vector designated as pEG1 for evaluation as an ethanol-inducible expression vector using EGFP as a model heterologous protein. Expression of EGFP was repressed in the presence of high glucose and induced in the presence of ethanol, low-glucose, and 1-propanol in the absence of glucose. Addition of ethanol to cells harboring pEG1–EGFP was found to be the most effective means for inducing EGFP production. Protein yields were found to increase in proportion to ethanol concentration. As a further test of effectiveness, secreted recombinant human growth hormone was produced using the pEG1 expression vector in medium containing glycerol and ethanol. The pEG1 gene expression system is an effective tool for the production of heterologous proteins under glucose-limiting conditions, including medium containing glycerol as a carbon source.  相似文献   

20.
P Sch?r  J Kohli 《The EMBO journal》1994,13(21):5212-5219
The ade6-M26 mutation of Schizosaccharomyces pombe stimulates intragenic and intergenic meiotic recombination. M26 is a single base pair change creating a specific heptanucleotide sequence that is crucial for recombination hotspot activity. This sequence is recognized by proteins that may facilitate rate-limiting steps of recombination at the ade6 locus. To start the elucidation of the intermediate DNA structures formed during M26 recombination, we have analyzed the aberrant segregation patterns of two G to C transversion mutations flanking the heptanucleotide sequence in crosses homozygous for M26. At both sites the level of post-meiotic segregation is typical for G to C transversion mutations in S. pombe in general. Quantitative treatment of the data provides strong evidence for heteroduplex DNA being the major recombination intermediate at the M26 site. We can now exclude a double-strand gap repair mechanism to account for gene conversion across the recombination hotspot. Furthermore, the vast majority (> 95%) of the heteroduplexes covering either of the G to C transversion sites are produced by transfer of the transcribed DNA strand. These results are consistent with ade6-M26 creating an initiation site for gene conversion by the introduction of a single-strand or a double-strand break in its vicinity, followed by transfer of the transcribed DNA strands for heteroduplex DNA formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号