首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The cbb 3-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. The cbb 3 oxidases are missing an active-site tyrosine residue that is absolutely conserved in all A and B-type heme-copper oxidases. This tyrosine is known to play a critical role in the catalytic mechanisms of A and B-type oxidases. The absence of this tyrosine in the cbb 3 oxidases raises the possibility that the cbb 3 oxidases utilize a different catalytic mechanism from that of the other members of the superfamily, or have this conserved residue in different helices. Recently sequence comparisons indicate that, a tyrosine residues that might be analogous to the active-site tyrosine in other oxidases are present in the cbb 3 oxidases but these tyrosines originates from a different transmembrane helix within the protein. In this research, three conserved tyrosine residues, Y294, Y308 and Y318, in helix VII were substituted for phenylalanine. Y318F mutant in the Rhodobacter capsulatus oxidase resulted in a fully assembled enzyme with nativelike structure and activity, but Y294F mutant is not assembled and have a catalytic activity. On the other hand, Y308F mutant is fully assembled enzyme with nativelike structure, but lacking catalytic activity. This result indicates that Y308 should be crucial in catalytic activity of the cbb 3 oxidase of R. capsulatus. These findings support the assumption that all of the heme-copper oxidases utilize the same catalytic mechanism and provide a residue originates from different places within the primary sequence for different members of the same superfamily.  相似文献   

2.
Sharma V  Wikström M  Laakkonen L 《Biochemistry》2008,47(14):4221-4227
The active site of the heme-copper oxidases comprises a redox-active high-spin heme and a tris-histidine copper center Cu B. Two amino acids in the close vicinity of the metals, a tyrosine and a tryptophan from helix 6, have been shown to be absolutely required for the catalytic function and should be considered part of the active site. Additionally, amino acid residues from interhelical loops strongly modify the activity. In a separate subfamily of heme-copper oxidases, the cbb 3-type oxidases, the metal centers are identical, the tyrosine is found in helix 7, but nothing is known of the corresponding tryptophan or of the involvement of the loop residues. We have observed a conserved aromatic cluster in the known oxidase structures, including the essential tryptophan and loop residues, and refined our earlier model of the cbb 3-type oxidase from Rhodobacter sphaeroides to test the feasibility of a similar structure. In the refined model, the interactions around the Delta-propionate of the high-spin heme resemble closely those seen in crystal structures of other terminal oxidases. Two alternative models (G- and C-models) that differ for the positioning of conserved tryptophans in helix 6, are presented. Molecular dynamics simulations on the catalytic subunit of the cbb 3-type oxidase model result in a conformational change of the active-site tyrosine, which may be related to different ligand-binding properties of the cbb 3-type oxidases. The relationship between sequence and functional data for defining the subfamily is discussed.  相似文献   

3.
In the respiratory chains of aerobic organisms, oxygen reductase members of the heme-copper superfamily couple the reduction of O2 to proton pumping, generating an electrochemical gradient. There are three distinct families of heme-copper oxygen reductases: A, B, and C types. The A- and B-type oxygen reductases have an active-site tyrosine that forms a unique cross-linked histidine-tyrosine cofactor. In the C-type oxygen reductases (also called cbb3 oxidases), an analogous active-site tyrosine has recently been predicted by molecular modeling to be located within a different transmembrane helix in comparison to the A- and B-type oxygen reductases. In this work, Fourier-transform mass spectrometry is used to show that the predicted tyrosine forms a histidine-tyrosine cross-linked cofactor in the active site of the C-type oxygen reductases. This is the first known example of the evolutionary migration of a post-translationally modified active-site residue. It also verifies the presence of a unique cofactor in all three families of proton-pumping respiratory oxidases, demonstrating that these enzymes likely share a common reaction mechanism and that the histidine-tyrosine cofactor may be a required component for proton pumping.  相似文献   

4.
The cbb3-type oxidases are members of the heme-copper oxidase superfamily, distant by sequence comparisons, but sharing common functional characteristics. To understand the minimal common properties of the superfamily, and to learn about cbb3-type oxidases specifically, we have analyzed a wide set of heme-copper oxidase sequences and built a homology model of the catalytic subunit of the cbb3 oxidase from Rhodobacter sphaeroides. We conclude that with regard to the active site surroundings, the cbb3 oxidases greatly resemble the structurally known oxidases, while major differences are found in three segments: the additional N-terminal stretch of ca. 60 amino acids, the segment following helix 3 to the end of helix 5, and the C-terminus from helix 11 onward. The conserved core contains the active site tyrosine and also an analogue of the K-channel of proton transfer, but centered on a well-conserved histidine in the lower part of helix 7. Modeling the variant parts of the enzyme suggests that two periplasmic loops (between helices 3 and 4 and between helices 11 and 12) could interact with each other as a part of the active site structure and might have an important role in proton pumping. An analogue of the D-channel is not found, but an alternative channel might form around helix 9. A preliminary packing model of the trimeric enzyme is also presented.  相似文献   

5.
The proton-pumping cbb(3)-type cytochrome c oxidases catalyze cell respiration in many pathogenic bacteria. For reasons not yet understood, the apparent dioxygen (O(2)) affinity in these enzymes is very high relative to other members of the heme-copper oxidase (HCO) superfamily. Based on density functional theory (DFT) calculations on intermediates of the oxygen scission reaction in active-site models of cbb(3)- and aa(3)-type oxidases, we find that a transient peroxy intermediate (I(P), Fe[III]-OOH(-)) is ~6kcal/mol more stable in the former case, resulting in more efficient kinetic trapping of dioxygen and hence in a higher apparent oxygen affinity. The major molecular basis for this stabilization is a glutamate residue, polarizing the proximal histidine ligand of heme b(3) in the active site.  相似文献   

6.
A survey of genomes for the presence of gene clusters related to cbb(3) oxidases detected bona fide members of the family in almost all phyla of the domain Bacteria. No archaeal representatives were found. The subunit composition was seen to vary substantially between clades observed on the phylogenetic tree of the catalytic subunit CcoN. The protein diade formed by CcoN and the monoheme cytochrome CcoO appears to constitute the functionally essential "core" of the enzyme conserved in all sampled cbb(3) gene clusters. The topology of the phylogenetic tree contradicts the scenario of a recent origin of cbb(3) oxidases and substantiates the status of this family as a phylogenetic entity on the same level as the other subgroups of the heme-copper superfamily (including nitric oxide reductase). This finding resuscitates and exacerbates the conundrum of the evolutionary origin of heme-copper oxidases.  相似文献   

7.
The thermohalophilic bacterium Rhodothermus marinus expresses a caa(3)-type dioxygen reductase as one of its terminal oxidases. The subunit I amino acid sequence shows the presence of all the essential residues of the D- and K-proton channels, defined in most heme-copper oxidases, with the exception of the key glutamate residue located in the middle of the membrane dielectric (E278 in Paracoccus denitrificans). On the basis of homology modeling studies, a tyrosine residue (Y256, R. marinus numbering) has been proposed to act as a functional substitute [Pereira, M. M., Santana, M., Soares, C. M., Mendes, J., Carita, J. N., Fernandes, A. S., Saraste, M., Carrondo, M. A., and Teixeira, M. (1999) Biochim. Biophys. Acta 1413, 1-13]. Here, R. marinus caa(3) oxidase was reconstituted in liposomes and shown to operate as a proton pump, translocating protons from the cytoplasmic side of the bacterial inner membrane to the periplasmatic space with a stoichiometry of 1H(+)/e(-), as in the case in heme-copper oxidases that contain the glutamate residue. Possible mechanisms of proton transfer in the D-channel with the participation of the tyrosine residue are discussed. The observation that the tyrosine residue is conserved in several other members of the heme-copper oxidase superfamily suggests a common alternative mode of action for the D-channel.  相似文献   

8.
Cytochrome cbb(3) oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the cbb(3) oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the cbb(3) oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.  相似文献   

9.
A glutamic acid residue in subunit I of the heme-copper oxidases is highly conserved and has been directly implicated in the O(2) reduction and proton-pumping mechanisms of these respiratory enzymes. Its mutation to residues other than aspartic acid dramatically inhibits activity, and proton translocation is lost. However, this glutamic acid is replaced by a nonacidic residue in some structurally distant members of the heme-copper oxidases, which have a tyrosine residue in the vicinity. Here, using cytochrome c oxidase from Paracoccus denitrificans, we show that replacement of the glutamic acid and a conserved glycine nearby lowers the catalytic activity to <0.1% of the wild-type value. But if, in addition, a phenylalanine that lies close in the structure is changed to tyrosine, the activity rises more than 100-fold and proton translocation is restored. Molecular dynamics simulations suggest that the tyrosine can support a transient array of water molecules that may be essential for proton transfer in the heme-copper oxidases. Surprisingly, the glutamic acid is thus not indispensable, which puts important constraints on the catalytic mechanism of these enzymes.  相似文献   

10.
Cytochrome cbb(3) oxidases are found almost exclusively in Proteobacteria, and represent a distinctive class of proton-pumping respiratory heme-copper oxidases (HCO) that lack many of the key structural features that contribute to the reaction cycle of the intensely studied mitochondrial cytochrome c oxidase (CcO). Expression of cytochrome cbb(3) oxidase allows human pathogens to colonise anoxic tissues and agronomically important diazotrophs to sustain N(2) fixation. We review recent progress in the biochemical characterisation of these distinctive oxidases that lays the foundation for understanding the basis of their proposed high affinity for oxygen, an apparent degeneracy in their electron input pathways and whether or not they acquired the ability to pump protons independently of other HCOs.  相似文献   

11.
Cell respiration is catalyzed by the heme-copper oxidase superfamily of enzymes, which comprises cytochrome c and ubiquinol oxidases. These membrane proteins utilize different electron donors through dissimilar access mechanisms. We report here the first structure of a ubiquinol oxidase, cytochrome bo3, from Escherichia coli. The overall structure of the enzyme is similar to those of cytochrome c oxidases; however, the membrane-spanning region of subunit I contains a cluster of polar residues exposed to the interior of the lipid bilayer that is not present in the cytochrome c oxidase. Mutagenesis studies on these residues strongly suggest that this region forms a quinone binding site. A sequence comparison of this region with known quinone binding sites in other membrane proteins shows remarkable similarities. In light of these findings we suggest specific roles for these polar residues in electron and proton transfer in ubiquinol oxidase.  相似文献   

12.
It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Cytochrome cbb(3) oxidase, a member of the heme-copper oxidase superfamily, is characterized by its high affinity for oxygen while retaining the ability to pump protons. These attributes are central to its proposed role in the microaerobic metabolism of proteobacteria. We have completed the first detailed spectroscopic characterization of a cytochrome cbb(3) oxidase, the enzyme purified from Pseudomonas stutzeri. A combination of UV-visible and magnetic CD spectroscopies clearly identified four low-spin hemes and the high-spin heme of the active site. This heme complement is in good agreement with our analysis of the primary sequence of the ccoNOPQ operon and biochemical analysis of the complex. Near-IR magnetic CD spectroscopy revealed the unexpected presence of a low-spin bishistidine-coordinated c-type heme in the complex. This was shown to be one of two c-type hemes in the CcoP subunit by separately expressing the subunit in Escherichia coli. Separate expression of CcoP also allowed us to unambiguously assign each of the signals associated with low-spin ferric hemes present in the X-band EPR spectrum of the oxidized enzyme. This work both underpins future mechanistic studies on this distinctive class of bacterial oxidases and raises questions concerning the role of CcoP in electron delivery to the catalytic subunit.  相似文献   

14.
Hemp J  Han H  Roh JH  Kaplan S  Martinez TJ  Gennis RB 《Biochemistry》2007,46(35):9963-9972
Oxygen reductase members of the heme-copper superfamily are terminal respiratory oxidases in mitochondria and many aerobic bacteria and archaea, coupling the reduction of molecular oxygen to water to the translocation of protons across the plasma membrane. The protons required for catalysis and pumping in the oxygen reductases are derived from the cytoplasmic side of the membrane, transferred via proton-conducting channels comprised of hydrogen bond chains containing internal water molecules along with polar amino acid side chains. Recent analyses identified eight oxygen reductase families in the superfamily: the A-, B-, C-, D-, E-, F-, G-, and H-families of oxygen reductases. Two proton input channels, the K-channel and the D-channel, are well established in the A-family of oxygen reductases (exemplified by the mitochondrial cytochrome c oxidases and by the respiratory oxidases from Rhodobacter sphaeroides and Paracoccus denitrificans). Each of these channels can be identified by the pattern of conserved polar amino acid residues within the protein. The C-family (cbb3 oxidases) is the second most abundant oxygen reductase family after the A-family, making up more than 20% of the sequences of the heme-copper superfamily. In this work, sequence analyses and structural modeling have been used to identify likely proton channels in the C-family. The pattern of conserved polar residues supports the presence of only one proton input channel, which is spatially analogous to the K-channel in the A-family. There is no pattern of conserved residues that could form a D-channel analogue or an alternative proton channel. The functional importance of the residues proposed to be part of the K-channel was tested by site-directed mutagenesis using the cbb3 oxidases from R. sphaeroides and Vibrio cholerae. Several of the residues proposed to be part of the putative K-channel had significantly reduced catalytic activity upon mutation: T219V, Y227F/Y228F, N293D, and Y321F. The data strongly suggest that in the C-family only one channel functions for the delivery of both catalytic and pumped protons. In addition, it is also proposed that a pair of acidic residues, which are totally conserved among the C-family, may be part of a proton-conducting exit channel for pumped protons. The residues homologous to these acidic amino acids are highly conserved in the cNOR family of nitric oxide reductases and have previously been implicated as part of a proton-conducting channel delivering protons from the periplasmic side of the membrane to the enzyme active site in the cNOR family. It is possible that the C-family contains a homologous proton-conducting channel that delivers pumped protons in the opposite direction, from the active site to the periplasm.  相似文献   

15.
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains an oxygen reductase, which uses HiPIP (high potential iron-sulfur protein) as an electron donor. The structural genes encoding the four subunits of this HiPIP:oxygen oxidoreductase were cloned and sequenced. The genes for subunits II, I, III, and IV (named rcoxA to rcoxD) are found in this order and seemed to be organized in an operon of at least five genes with a terminator structure a few nucleotides downstream of rcoxD. Examination of the amino acid sequence of the Rcox subunits shows that the subunits of the R. marinus enzyme have homology to the corresponding subunits of oxidases belonging to the superfamily of heme-copper oxidases. RcoxB has the conserved histidines involved in binding the binuclear center and the low-spin heme. All of the residues proposed to be involved in proton transfer channels are conserved, with the exception of the key glutamate residue of the D-channel (E(278), Paracoccus denitrificans numbering). Analysis of the homology-derived structural model of subunit I shows that the phenol group of a tyrosine (Y) residue and the hydroxyl group of the following serine (S) may functionally substitute the glutamate carboxyl in proton transfer. RcoxA has an additional sequence for heme C binding, after the Cu(A) domain, that is characteristic of caa(3) oxidases belonging to the superfamily. Homology modeling of the structure of this cytochrome domain of subunit II shows no marked electrostatic character, especially around the heme edge region, suggesting that the interaction with a redox partner is not of an electrostatic nature. This observation is analyzed in relation to the electron donor for this caa(3) oxidase, the HiPIP. In conclusion, it is shown that an oxidase, which uses an iron-sulfur protein as an electron donor, is structurally related to the caa(3) class of heme-copper cytochrome c oxidases. The data are discussed in the framework of the evolution of oxidases within the superfamily of heme-copper oxidases.  相似文献   

16.
We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS(2)-FTIR) spectroscopy to investigate the dynamics of the heme-Cu(B) binuclear center and the protein dynamics of mammalian aa(3), Pseudomonas stutzeri cbb(3), and caa(3) and ba(3) from Thermus thermophilus cytochrome oxidases. The implications of these results with respect to (1) the molecular motions that are general to the photodynamics of the binuclear center in heme-copper oxidases, and (2) the proton pathways located in the ring A propionate of heme a(3)-Asp372-H(2)O site that is conserved among all structurally known oxidases are discussed.  相似文献   

17.
Pitcher RS  Brittain T  Watmough NJ 《Biochemistry》2003,42(38):11263-11271
Cytochrome cbb(3) oxidase, from Pseudomonas stutzeri, contains a total of five hemes, two of which, a b-type heme in the active site and a hexacoordinate c-type heme, can bind CO in the reduced state. By comparing the cbb(3) oxidase complex and the isolated CcoP subunit, which contains the ligand binding bishistidine-coordinated c-type heme, we have deconvoluted the contribution made by each center to CO binding. A combination of rapid mixing and flash photolysis experiments, coupled with computer simulations, reveals the kinetics of the reaction of c-type heme with CO to be complex as a result of the need to displace an endogenous axial ligand, a property shared with nonsymbiotic plant hemoglobins and some heme-based gas sensing domains. The recombination of CO with heme b(3), unlike all other heme-copper oxidases, including mitochondrial cytochrome c oxidase, is independent of ligand concentration. This observation suggests a very differently organized dinuclear center in which CO exchange between Cu(B) and heme b(3) is significantly enhanced, perhaps reflecting an important determinant of substrate affinity.  相似文献   

18.
The cytochrome cbb3 is an isoenzyme in the family of cytochrome c oxidases. This protein purified from Pseudomonas stutzeri displays a cyanide-sensitive nitric oxide reductase activity (Vmax=100+/-9 mol NO x mol cbb3(-1) x min(-1) and Km=12+/-2.5 microm), which is lost upon denaturation. This enzyme is only partially reduced by ascorbate, and readily re-oxidized by NO under anaerobic conditions at a rate consistent with the turnover number for NO consumption. As shown by transient spectroscopy experiments and singular value decomposition (SVD) analysis, these results suggest that the cbb3-type cytochromes, sharing structural features with bacterial nitric oxide reductases, are the enzymes retaining the highest NO reductase activity within the heme-copper oxidase superfamily.  相似文献   

19.
Plasmid-mediated virulence genes in non-typhoid Salmonella serovars   总被引:6,自引:0,他引:6  
Abstract Among aerobic prokaryotes, many different terminal oxidase complexes have been described. Sequence comparison has revealed that the aa 3-type cytochrome c oxidase and the bo 3-type quinol oxidase are variations on the same theme: the heme-copper oxidase. A third member of this family has recently been recognized: the cbb 3-type cytochrome c oxidase. Here we give an overview, and report that nitric oxide (NO) reductase, a bc -type cytochrome involved in denitrification, shares important features with these terminal oxidases as well. Tentative structural, functional and evolutionary implications are discussed.  相似文献   

20.
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号