首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rats were given intraventricular (ivt) injections of various doses (50-400 micrograms, hydrobromide salt) of 6-hydroxydopamine (6-OHDA) and killed 1, 3 or 6 days later. Brains were removed, dissected into 11 regions, and the thyrotropin-releasing hormone (TRH) content of each region was measured by radioimmunoassay. 6-OHDA (400 micrograms) caused significant elevations in the TRH content of 6 regions: olfactory bulb, anterior cortex, brainstem, posterior cortex, hippocampus, and amygdala-piriform cortex. The magnitude of these increases ranged from 59% in olfactory bulb to 497% in hippocampus and was, in all cases, greatest at 3 days. These results suggest that the TRH content of certain brain regions may be regulated by catecholamine neurotransmitters.  相似文献   

2.
A E Pekary  J R Reeve  V P Smith 《Life sciences》1986,39(26):2565-2570
TRH occurs in very high concentration in rat prostate. A species specific protein with repetitive -Gln-His-Pro-Gly- sequences, which are flanked on the N- and C-terminus by paired basic residues, has been shown to be the source of TRH in frog skin and rat hypothalamus. Following cleavage by trypsin-like enzymes, the peptide fragments with N-terminal Gln spontaneously cyclize to pGlu while Gly within the C-terminally extended peptides serves as the -NH2 donor for the alpha-amidation of the proline residue. Because this last step in the biosynthesis of TRH is rate limiting for pGlu-His-Pro-Gly, we have combined several chromatographic and radioimmunoassay techniques to identify this TRH precursor in rat prostate.  相似文献   

3.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

4.
The effects of 40 mg oral and 200 microgram intravenous TRH were studied in patients with active acromegaly. Administration of oral TRH to each of 14 acromegalics resulted in more pronounced TSH response in all patients and more pronounced response of triiodothyronine in most of them (delta max TSh after oral TRh 36.4 +/- 10.0 (SEM) mU/l vs. delta max TSH after i.v. TRH 7.7 +/- 1.5 mU/l, P less than 0.05; delta max T3 after oral TRH 0.88 +/- 0.24 nmol/vs. delta max T3 after i.v. TRH 0.23 +/- 0.06 nmol/l, P less than 0.05). Oral TRH elicited unimpaired TSH response even in those acromegalics where the TSH response to i.v. TRH was absent or blunted. In contrast to TSH stimulation, oral TRH did not elicit positive paradoxical growth hormone response in any of 8 patients with absent stimulation after i.v. TRH. In 7 growth hormone responders to TRH stimulation the oral TRH-induced growth hormone response was insignificantly lower than that after i.v. TRH (delta max GH after oral TRH 65.4 +/- 28.1 microgram/l vs. delta max GH after i.v. TRH 87.7 +/- 25.6 microgram/l, P greater than 0.05). In 7 acromegalics 200 microgram i.v. TRH represented a stronger stimulus for prolactin release than 40 mg oral TRH (delta max PRL after i.v. TRH 19.6 +/- 3.22 microgram/, delta max PRL after oral TRH 11.1 +/- 2.02 microgram/, P less than 0.05). Conclusion: In acromegalics 40 mg oral TRH stimulation is useful in the evaluation of the function of pituitary thyrotrophs because it shows more pronounced effect than 200 microgram TRH intravenously. No advantage of oral TRH stimulation was seen in the assessment of prolactin stimulation and paradoxical growth hormone responses.  相似文献   

5.
An extract of a pancreatic carcinoid tumor obtained at autopsy from a patient who had suffered from Cushing's syndrome was found to have the ability to release thyrotropin (but not any other pituitary hormones) from cultured rat anterior pituitary cells, and to bind to a specific thyrotropin-releasing hormone (TRH) antiserum. The tumor contained 2.2 and 3.9 nmol/g of TRH bio- and immunoreactivity, respectively. The active material was purified and its amino acid composition and chromatographic properties were found to be identical with those of synthetic ovine/porcine TRH. This represents the first isolation of human TRH and the first established case of a 'TRHoma', a TRH-producing tumor.  相似文献   

6.
There is considerable evidence linking alcohol consumption and sedation and TRH in the brain septum. Moreover, innate septal TRH concentration is inversely related to the degree of ethanol preference. Recently we demonstrated in rats that four-week ethanol drinking increased the septal TRH content by 50 %. We had shown previously that ethanol induces neuronal swelling, which is known to evoke the secretion of hormones, peptides and amino acids from various types of cells. We have therefore explored the effect of hyposmotic medium and of 80 and 160 mM ethanol and 80 mM urea (both permeant molecules) in isosmotic and hyperosmotic (preventing cell swelling) media on the in vitro release of TRH by the rat septum. Lowering medium osmolarity resulted in a hyposmolarity-related increase in TRH secretion. Both ethanol and urea stimulated TRH release only in isosmolar solution. Our data indicate that ethanol in clinically relevant concentrations can induce TRH release from the septum by a mechanism involving neuronal swelling.  相似文献   

7.
8.
Using an autohistoradiographic technique, it has been possible to localize specific binding sites for [3H]thyrotropin-releasing hormone (TRH) in rat anterior pituitary cells in primary culture. A low percentage (3 %) of the cells were highly labelled while 10–20% of the remaining cells showed a lower level of accumulation of radioactivity. These data provide morphological evidence for the presence of TRH-binding sites in pituitary cells and suggest a large variation of their density.  相似文献   

9.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) down-regulates TRH receptor (TRH-R) mRNA (Fujimoto, J., Straub, R.E., and Gershengorn, M.C. (1991) Mol. Endocrinol. 5, 1527-1532), at least in part, by stimulating its degradation (Fujimoto, J., Narayanan, C.S., Benjamin, J.E., Heinflink, M., and Gershengorn, M.C. (1992) Endocrinology 130, 1879-1884). Here we show that TRH regulates RNase activity in GH3 cells and that specific mRNA sequences are needed for in vivo regulation of TRH-R mRNA by TRH. TRH affected RNase activity in a biphasic manner with rapid stimulation (by 10 min) followed by a decrease to a rate slower than in control lysates within 6 h. This time course paralleled the effects of TRH on degradation of TRH-R mRNA in vivo. The regulated RNase activity was in a polysome-free fraction of the lysates and was not specific for TRH-R RNA. A truncated form of TRH-R RNA that was missing the entire 3'-untranslated region (TRHR-R5) was more stable than full-length TRH-R RNA (TRHR-WT). In contrast to TRHR-WT mRNA, TRHR-R5 mRNA and TRHR-D9 mRNA, which was missing the 143 nucleotides 5' of the poly(A) tail, were not down-regulated by TRH in stably transfected GH3 cells as their rates of degradation were not increased. These data show that TRH regulates RNase activity in GH3 cells, that the 3'-untranslated region bestows decreased stability on TRH-R mRNA and that the 3' end of the mRNA is necessary for regulation by TRH of TRH-R mRNA degradation. We present an hypothesis that explains specific regulation of TRH-R mRNA degradation by TRH in GH3 pituitary cells.  相似文献   

10.
EEG topography by a microcomputer system (ATAC-3700 Nihon-Kohden) was performed in the rabbit in order to investigate the mechanism of TRH action on the brain wave. Power spectral analysis was carried out using a fast Fourier transform algorithm. The square root of the power spectra was defined as the equivalent potential over each frequency band by Ueno & Matsuoka's method. Potential fields of EEG frequency band were printed out on the topographic maps. The potentials of the electrocortical delta and theta waves were high, while the potentials of the alpha, beta 1 and beta 2 waves were low. Stimulation of the nucleus ventralis anterior (VA) by 3 Hz and 8 Hz resulted in a decrease in these potentials, especially, those of the alpha, beta 1 and beta 2 waves. The potentials of the alpha and fast waves were increased following unilateral destruction of VA. In the rabbit, in which TRH 0.5 mg/kg had been administered beforehand, there was no decrease in the potential of each wave induced by stimulation of VA with frequencies of 3 Hz and 8 Hz. The findings suggest involvement of the diffuse thalamocortical projection system in the activation of EEG by TRH.  相似文献   

11.
12.
Thyrotropin-releasing hormone (TRH) is present in small quantities in the rat adult pancreas. As hypothyroidism increases dramatically the pancreatic content of this peptide, this model was used to localize TRH in the gland by immunocytochemistry. Immunocytochemical staining of semithin (0.5–1.0 μm) and thin (golden) sections was performed as well as antibody and method controls to check the specificity of the immunoperoxidase staining. At the light microscope level, a very faint TRH-like immunoreactivity was apparent in the pancreas of normal untreated animals. In hypothyroid rats, a strong TRH immunostaining was observed in the central portion of the islets of Langerhans. On the contrary, in previously hypothyroid rats made euthyroid, no TRH-like immunoreactivity was found. Serial sections alternately labelled with TRH and insulin antisera revealed the simultaneous occurrence of both immunoreactivities. In addition, the TRH immunoreactive cells were distinct from glucagon- or somatostatin-containing cells. At the electron microscope level, immunoreactive TRH was found over the secretory granules of insulin-containing cells. Hypothyroid animals offer therefore a suitable model for the study of TRH in the pancreas.  相似文献   

13.
14.
Y Goto  Y Tache 《Peptides》1985,6(1):153-156
Intracisternal injection of TRH (1 microgram) under light ether anesthesia induced within 4 hr gastric lesions in 24-hr fasted rats maintained unrestrained at room temperature. Saline, ovine corticotropin-releasing factor (oCRF, 10 micrograms), or human pancreatic growth hormone-releasing factor [hpGRF(1-40), 10 micrograms] tested under the same conditions did not modify the integrity of the gastric mucosa. TRH injected intravenously (100 micrograms/kg) proved to be ineffective. The production of gastric erosions elicited by intracisternal TRH (0.1-1 microgram) or by a stabilized TRH analog, RX 77368 [pGlu-His-(3,3'-dimethyl)-ProNH2, (0.01-0.1 microgram)] was dose-dependent. RX 77368 shows an enhanced potency over TRH. TRH action on gastric mucosa was reversed by atropine, omeprazole and cimetidine. These results demonstrate that TRH, unlike the other hypothalamic releasing factors CRF or GRF, is able to act within the brain to cause the formation of gastric erosions probably through mechanisms involving changes in gastric acid secretion. Intracisternal injection of TRH or its potent analog RX 77368 appears also as a new, simple method to produce centrally mediated experimental gastric erosions in 24 hr-fasted rats.  相似文献   

15.
We report synthesis and biological activities of several thyrotropin-releasing hormone (TRH) analogues in which the N-terminal pyroglutamic acid residue has been replaced with various carboxylic acids and the central histidine is modified with substituted-imidazole derivatives.  相似文献   

16.
Binding of TRH to specific cell surface receptors on clonal GH4C1 cells is followed within 10 min by receptor sequestration and over 24 h by receptor down-regulation. These experiments were designed to determine if TRH-activated second messenger systems are responsible for changes in receptor localization or number. BAY K8644 and A23187, which increase intracellular calcium, alone or together with 12-O-tetradecanoyl phorbol acetate (TPA), which activates protein kinase C, did not appear to internalize TRH receptors. Drug treatment did not alter the rate of [3H]MeTRH association or internalization, determined by resistance to an acid/salt wash, or the amount of [3H]MeTRH able to bind at 0 C, where only surface receptors are accessible. TPA (0-100 nM) alone or in combination with BAY K8644 or A23187, also failed to change receptor number or affinity after 48 h when TRH caused a 75% decrease in the density of specific binding sites. Chlordiazepoxide has been reported antagonize TRH binding and TRH-induced phospholipid breakdown. Chlordiazepoxide shifted the dose-response curves for TRH stimulation of PRL release and synthesis to the right, and did not change PRL release alone. The affinity of receptors for chlordiazepoxide was not affected by a nonhydrolyzable analog of GTP whereas affinity for TRH was decreased; these properties are consistent with the classification of chlordiazepoxide as a competitive antagonist. Several experiments tested whether chlordiazepoxide would cause receptor internalization and down-regulation. Chlordiazepoxide did not appear to internalize TRH receptors, because TRH-binding sites became available rapidly and at the same rate after they had been saturated with chlordiazepoxide at 0 or 37 C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Spectroscopy (UV-Vis, 1H NMR, ESR) and electrochemistry revealed details of the structure of the Cu(II)-TRH (pyroglutamyl-histidyl-prolyl amide) complex. The 1H NMR spectrum of TRH has been assigned. NMR spectra of TRH in the presence of Cu(II) showed that Cu(II) initially binds TRH through the imidazole. TRH analogs, pGlu-His-Pro-OH, pGlu-(1-Me)His-Pro-amide, pGlu-His-(3,4-dehydro)Pro-amide, pGlu-His-OH, pGlu-Glu-Pro-amide, and pGlu-Phe-Pro-amide provided comparison data. The stoichiometry of the major Cu(II)-TRH complex at pH 7.45 and greater is 1:1. The conditional formation constant (in pH 9.84 borate with 12.0 mM tartrate) for the formation of the complex is above 105 M−1. The coordination starts from the 1-N of the histidyl imidazole, and then proceeds along the backbone involving the deprotonated pGlu-His amide and the lactam nitrogen of the pGlu residue. The fourth equatorial donor is an oxygen donor from water. Hydroxide begins to replace the water before the pH reaches 11. Minority species with stoichiometry of Cu-(TRH)x (x = 2-4) probably exist at pH lower than 8.0. In non-buffered aqueous solutions, TRH acts as a monodentate ligand and forms a Cu(II)-(TRH)4 complex through imidazole nitrogens. All the His-containing analogs behave like TRH in terms of the above properties.  相似文献   

18.
Based on the fact that human pancreas has thyrotropin-releasing hormone (TRH) immunoreactivity and bioactivity, we studied the effect of TRH on peripheral plasma levels of pancreatic glucagon (IRG) and insulin (IRI) in healthy subjects. During the infusion of 400 micrograms TRH for 120 min basal plasma IRI and IRG levels did not change significantly. In addition, intravenous infusion of 400 micrograms TRH did not affect the increments in the plasma IRG levels and the decrements in the blood glucose during insulin hypoglycemia.  相似文献   

19.
Summary Using immunofluorescent techniques thyrotropin releasing hormone (TRH) is demonstrated in skin of Rana pipiens and R. catesbeiana. The immunofluorescent-TRH is localized in all cell layers of the epidermis and in the epithelium lining the various cutaneous glands, but not in the dermal layer.We wish to thank Dr. Ronald DeLellis and Ms. Mary Blount for their expert advice and guidance in the immunohistochemical techniques.This investigation was supported by NIH National Research Service Award # 1F32 AMO6018-01 from the NIAMDD to Janice L. Bolaffi and NIH Grant AM 21863 to Ivor M.D. Jackson.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号