首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
恒河猴Mamu-A^*01基因与SIV/SHIV感染相关的研究进展   总被引:2,自引:2,他引:0  
SIV/SHIV感染的恒河猴是研究艾滋病及艾滋病药物筛选、疫苗评价较理想的动物模型。MHC在细胞免疫中起着关键作用,研究表明,MHC-I类分子的多态性与SIV/SHIV感染者的疾病进展有着明显的关联作用,Mamu-A^*01是恒河猴中的一种MHC-I类分子,它可以呈递特定的病毒蛋白片段到细胞的表面,从而激发CTL反应。国外发现Mamu-A^*01阳性的猴艾滋病恒河猴会出现疾病进展缓慢,存活时间长等特征。本文就恒河猴Mamu-A^*01基因与SIV/SHIV感染相关的研究进展做一综述,以期进一步加深对MHC在疫苗研究中的作用的了解,并促进更行之有效地对HIV/AIDS疫苗进行评价。  相似文献   

2.
Certain major histocompatibility complex (MHC) class I alleles are associated with the control of human immunodeficiency virus and simian immunodeficiency virus (SIV) replication. We have designed sequence-specific primers for detection of the rhesus macaque MHC class I allele Mamu-B*08 by PCR and screened a cohort of SIV-infected macaques for this allele. Analysis of 196 SIV(mac)239-infected Indian rhesus macaques revealed that Mamu-B*08 was significantly overrepresented in elite controllers; 38% of elite controllers were Mamu-B*08 positive compared to 3% of progressors (P = 0.00001). Mamu-B*08 was also associated with a 7.34-fold decrease in chronic phase viremia (P = 0.002). Mamu-B*08-positive macaques may, therefore, provide a good model to understand the correlates of MHC class I allele-associated immune protection and viral containment in human elite controllers.  相似文献   

3.
BACKGROUND: Although the majority of drug-na?ve HIV-infected patients develop acquired immunodeficiency syndrome (AIDS), a small percentage remains asymptomatic without therapeutic intervention. METHODS: We have utilized the simian immunodeficiency virus (SIV)-infected rhesus macaque model to gain insights into the molecular mechanisms of long-term protection against simian AIDS. RESULTS: Chronically SIV-infected macaques with disease progression had high viral loads and CD4(+) T-cell depletion in mucosal tissue and peripheral blood. These animals displayed pathologic changes in gut-associated lymphoid tissue (GALT) and mesenteric lymph node that coincided with increased expression of genes associated with interferon induction, inflammation and immune activation. In contrast, the animal with long-term asymptomatic infection suppressed viral replication and maintained CD4(+) T cells in both GALT and peripheral blood while decreasing expression of genes involved in inflammation and immune activation. CONCLUSIONS: Our findings suggest that reduced immune activation and effective repair and regeneration of mucosal tissues correlate with long-term survival in SIV-infected macaques.  相似文献   

4.
In HIV infection, TLR7-triggered IFN-α production exerts a direct antiviral effect through the inhibition of viral replication, but may also be involved in immune pathogenesis leading to AIDS. TLR7 could also be an important mediator of vaccine efficacy. In this study, we analyzed polymorphisms in the X-linked TLR7 gene in the rhesus macaque model of AIDS. Upon resequencing of the TLR7 gene in 36 rhesus macaques of Indian origin, 12 polymorphic sites were detected. Next, we identified three tightly linked single nucleotide polymorphisms (SNP) as being associated with survival time. Genotyping of 119 untreated, simian immunodeficiency virus (SIV)-infected male rhesus macaques, including an 'MHC adjusted' subset, revealed that the three TLR7 SNPs are also significantly associated with set-point viral load. Surprisingly, this effect was not observed in 72 immunized SIV-infected male monkeys. We hypothesize (i) that SNP c.13G>A in the leader peptide is causative for the observed genotype-phenotype association and that (ii) the underlying mechanism is related to RNA secondary structure formation. Therefore, we investigated a fourth SNP (c.-17C>T), located 17 bp upstream of the ATG translation initiation codon, that is also potentially capable of influencing RNA structure. In c.13A carriers, neither set-point viral load nor survival time were related to the c.-17C>T genotype. In c.13G carriers, by contrast, the c.-17C allele was significantly associated with prolonged survival. Again, no such association was detected among immunized SIV-infected macaques. Our results highlight the dual role of TLR7 in immunodeficiency virus infection and vaccination and imply that it may be important to control human AIDS vaccine trials, not only for MHC genotype, but also for TLR7 genotype.  相似文献   

5.
To define the role of alpha/beta interferons (IFN-alpha/beta) in simian immunodeficiency virus (SIV) infection, IFN-alpha and IFN-beta mRNA levels and mRNA levels of Mx, an antiviral effector molecule, were determined in lymphoid tissues of rhesus macaques infected with pathogenic SIV. IFN-alpha/beta responses were induced during the acute phase and persisted in various lymphoid tissues throughout the chronic phase of infection. IFN-alpha/beta responses were most consistent in tissues with high viral RNA levels; thus, IFN-alpha/beta responses were not generally associated with effective control of SIV replication. IFN-alpha/beta responses were differentially regulated in different lymphoid tissues and at different stages of infection. The most consistent IFN-alpha/beta responses in acute and chronic SIV infection were observed in peripheral lymph nodes. In the spleen, only a transient increase in IFN-alpha/beta mRNA levels during acute SIV infection was observed. Further, IFN-alpha and IFN-beta mRNA levels showed a tissue-specific expression pattern during the chronic, but not the acute, phase of infection. In the acute phase of infection, SIV RNA levels in lymphoid tissues of rhesus macaques correlated with mRNA levels of both IFN-alpha and IFN-beta, whereas during chronic SIV infection only increased IFN-alpha mRNA levels correlated with the level of virus replication in the same tissues. In lymphoid tissues of all SIV-infected monkeys, higher viral RNA levels were associated with increased Mx mRNA levels. We found no evidence that monkeys with increased Mx mRNA levels in lymphoid tissues had enhanced control of virus replication. In fact, Mx mRNA levels were associated with high viral RNA levels in lymphoid tissues of chronically infected animals.  相似文献   

6.
The expression of particular major histocompatibility complex (MHC) class I alleles can influence the rate of disease progression following lentiviral infections. This effect is a presumed consequence of potent cytotoxic T-lymphocyte (CTL) responses that are restricted by these MHC class I molecules. The present studies have examined the impact of the MHC class I allele Mamu-A*01 on simian/human immunodeficiency virus 89.6P (SHIV-89.6P) infection in unvaccinated and vaccinated rhesus monkeys by exploring the contribution of dominant-epitope specific CTL in this setting. Expression of Mamu-A*01 in immunologically naive monkeys was not associated with improved control of viral replication, CD4+ T-lymphocyte loss, or survival. In contrast, Mamu-A*01+ monkeys that had received heterologous prime/boost immunizations prior to challenge maintained higher CD4+ T-lymphocyte levels and better control of SHIV-89.6P replication than Mamu-A*01- monkeys. This protection was associated with the evolution of high-frequency anamnestic CTL responses specific for a dominant Mamu-A*01-restricted Gag epitope following infection. These data indicate that specific MHC class I alleles can confer protection in the setting of a pathogenic SHIV infection by their ability to elicit memory CTL following vaccination.  相似文献   

7.
Experimentally infected rhesus monkeys serve as an indispensable animal model to assess the pathogenesis, to validate therapy approaches and to develop vaccination strategies against viral diseases such as AIDS threatening the human population. Upon infection with simian immunodeficiency virus (SIV), a retrovirus closely related to the human immunodeficiency virus (HIV), macaques develop clinical manifestations similar to those of HIV-infected humans. As in humans, the disease course is variable. Polymorphic genes of the major histocompatibility complex (MHC) are required for the initiation and regulation of a specific immune response and represent a major host factor accounting for the differential outcome of infection. During the last few years, our understanding of the structure and function of the rhesus macaque MHC has increased substantially. Functional studies have led to the identification of specific SIV and HIV peptide epitopes presented by rhesus macaque MHC molecules. The subsequent development of MHC class I tetramers has allowed further insight into the cellular immune response following SIV-infection. Detailed studies demonstrated that viral escape mutants are generated during the acute and chronic phase of infection and explain why control of viral replication ultimately fails. Furthermore, particular MHC haplotypes which influence disease progression have been discovered. Thus, MHC-typing can have a prognostic potential. The further elucidation of the rhesus macaque MHC and the search for other relevant genes will remain an important task for future research and will stimulate all immunologically-related investigations in macaques.  相似文献   

8.
MHC class I-restricted CD8+ T cells play an important role in controlling HIV and SIV replication. In SIV-infected Indian rhesus macaques (Macaca mulatta), comprehensive CD8+ T cell epitope identification has only been undertaken for two alleles, Mamu-A*01 and Mamu-B*17. As a result, these two molecules account for virtually all known MHC class I-restricted SIV-derived CD8+ T cell epitopes. SIV pathogenesis research and vaccine testing have intensified the demand for epitopes restricted by additional MHC class I alleles due to the shortage of Mamu-A*01+ animals. Mamu-A*02 is a high frequency allele present in over 20% of macaques. In this study, we characterized the peptide binding of Mamu-A*02 using a panel of single amino acid substitution analogues and a library of 497 unrelated peptides. Of 230 SIVmac239 peptides that fit the Mamu-A*02 peptide-binding motif, 75 peptides bound Mamu-A*02 with IC50 values of < or = 500 nM. We assessed the antigenicity of these 75 peptides using an IFN-gamma ELISPOT assay with freshly isolated PBMC from eight Mamu-A*02+ SIV-infected macaques and identified 17 new epitopes for Mamu-A*02. The synthesis of five Mamu-A*02 tetramers demonstrated the discrepancy between tetramer binding and IFN-gamma secretion by SIV-specific CD8+ T cells during chronic SIV infection. Bulk sequencing determined that 2 of the 17 epitopes accumulated amino acid replacements in SIV-infected macaques by the chronic phase of infection, suggestive of CD8+ T cell escape in vivo. This work enhances the use of the SIV-infected macaque model for HIV and increases our understanding of the breadth of CD8+ T cell responses in SIV infection.  相似文献   

9.
To understand how natural sooty mangabey hosts avoid AIDS despite high levels of simian immunodeficiency virus (SIV) SIVsm replication, we inoculated mangabeys and nonnatural rhesus macaque hosts with an identical inoculum of uncloned SIVsm. The unpassaged virus established infection with high-level viral replication in both macaques and mangabeys. A species-specific, divergent immune response to SIV was evident from the first days of infection and maintained in the chronic phase, with macaques showing immediate and persistent T-cell proliferation, whereas mangabeys displayed little T-cell proliferation, suggesting subdued cellular immune responses to SIV. Importantly, only macaques developed (CD4+)-T-cell depletion and AIDS, thus indicating that in mangabeys limited immune activation is a key mechanism to avoid immunodeficiency despite high levels of SIVsm replication. These studies demonstrate that it is the host response to infection, rather than properties inherent to the virus itself, that causes immunodeficiency in SIV-infected nonhuman primates.  相似文献   

10.
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the D(d) mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These "G2" alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the "G2" alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.  相似文献   

11.
The role of CD4(+) T cells in the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication is not well understood. Even though strong HIV- and SIV-specific CD4(+) T-cell responses have been detected in individuals that control viral replication, major histocompatibility complex class II (MHC-II) molecules have not been definitively linked with slow disease progression. In a cohort of 196 SIVmac239-infected Indian rhesus macaques, a group of macaques controlled viral replication to less than 1,000 viral RNA copies/ml. These elite controllers (ECs) mounted a broad SIV-specific CD4(+) T-cell response. Here, we describe five macaque MHC-II alleles (Mamu-DRB*w606, -DRB*w2104, -DRB1*0306, -DRB1*1003, and -DPB1*06) that restricted six SIV-specific CD4(+) T-cell epitopes in ECs and report the first association between specific MHC-II alleles and elite control. Interestingly, the macaque MHC-II alleles, Mamu-DRB1*1003 and -DRB1*0306, were enriched in this EC group (P values of 0.02 and 0.05, respectively). Additionally, Mamu-B*17-positive SIV-infected rhesus macaques that also expressed these two MHC-II alleles had significantly lower viral loads than Mamu-B*17-positive animals that did not express Mamu-DRB1*1003 and -DRB1*0306 (P value of <0.0001). The study of MHC-II alleles in macaques that control viral replication could improve our understanding of the role of CD4(+) T cells in suppressing HIV/SIV replication and further our understanding of HIV vaccine design.  相似文献   

12.
Infection with human immunodeficiency virus or simian immunodeficiency virus (SIV) induces virus-specific CD8(+) T cells that traffic to lymphoid and nonlymphoid tissues. In this study, we used Gag-specific tetramer staining to investigate the frequency of CD8(+) T cells in peripheral blood and the central nervous system of Mamu-A*01-positive SIV-infected rhesus macaques. Most of these infected macaques were vaccinated prior to SIVmac251 exposure. The frequency of Gag(181-189) CM9 tetramer-positive cells was consistently higher in the cerebrospinal fluid and the brain than in the blood of all animals studied and did not correlate with either plasma viremia or CD4(+)-T-cell level. Little or no infection in the brain was documented for most animals by nucleic acid sequence-based amplification or in situ hybridization. These data suggest that this Gag-specific response may contribute to the containment of viral replication in this locale.  相似文献   

13.
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo.  相似文献   

14.
A better understanding of the host and viral factors associated with human immunodeficiency virus (HIV) transmission is essential to developing effective strategies to curb the global HIV epidemic. Here we used the rhesus macaque-simian immunodeficiency virus (SIV) animal model of HIV infection to study the range of viral genotypes that are transmitted by different routes of inoculation and by different types of viral inocula. Analysis of transmitted variants was undertaken in outbred rhesus macaques inoculated intravenously (IV) or intravaginally (IVAG) with a genetically heterogeneous SIVmac251 stock derived from a well-characterized rhesus macaque viral isolate. In addition, we performed serial IV and IVAG passage experiments using plasma from SIV-infected macaques as the inoculum. We analyzed the V1-V2 region of the SIV envelope gene from virion-associated RNA in plasma from infected animals by the heteroduplex mobility assay (HMA) and by DNA sequence analysis. We found that a more diverse population of SIV genetic variants was present in the earliest virus-positive plasma samples from all five IV SIVmac251-inoculated monkeys and from two of five IVAG SIVmac251-inoculated monkeys. In contrast, we found a relatively homogeneous population of SIV envelope variants in three of five monkeys inoculated IVAG with SIVmac251 stock and in two monkeys infected after IVAG inoculation with plasma from an SIV-infected animal. In some IVAG-inoculated animals, the transmitted SIV variant was the most common variant in the inoculum. However, a specific viral variant in the SIVmac251 stock was not consistently transmitted by IVAG inoculation. Thus, it is likely that host factors or stochastic processes determine the specific viral variants that infect an animal after IVAG SIV exposure. In addition, our results clearly demonstrate that the route of inoculation is associated with the extent and breadth of the genetic complexity of the viral variant population in the earliest stages of systemic infection.  相似文献   

15.
Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8(+) T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8(+) T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4(+) memory T lymphocytes during peak viremia, and all four recovered their CD4(+) memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8(+) T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8(+) T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8(+) T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8(+) T-cell responses.  相似文献   

16.
The utility of the rhesus macaque as an animal model in both HIV vaccine development and pathogenesis studies necessitates the development of accurate and efficient major histocompatibility complex (MHC) genotyping technologies. In this paper, we describe the development and application of allele-specific polymerase chain reaction (PCR) amplification for the simultaneous detection of eight MHC class I alleles from the rhesus macaque (Macaca mulatta) of Indian descent. These alleles were selected, as they have been implicated in the restriction of CD8(+) T cell epitopes of simian immunodeficiency virus (SIV). Molecular typing of Mamu-A 01, Mamu-A 02, Mamu-A 08, Mamu-A 11, Mamu-B 01, Mamu-B 03, Mamu-B 04, and Mamu-B 17 was conducted in a high throughput fashion using genomic DNA. Our amplification strategy included a conserved internal control target to minimize false negative results and can be completed in less than 5 h. We have genotyped over 4,000 animals to establish allele frequencies from colonies all over the western hemisphere. The ability to identify MHC-defined rhesus macaques will greatly enhance investigation of the immune responses, which are responsible for the control of viral replication. Furthermore, application of this technically simple and accurate typing method should facilitate selection, utilization, and breeding of rhesus macaques for AIDS virus pathogenesis and vaccine studies.  相似文献   

17.
MHC-dependent CD8(+) T cell responses have been associated with control of viral replication and slower disease progression during lentiviral infections. Pig-tailed macaques (Macaca nemestrina) and rhesus monkeys (Macaca mulatta), two nonhuman primate species commonly used to model HIV infection, can exhibit distinct clinical courses after infection with different primate lentiviruses. As an initial step in assessing the role of MHC class I restricted immune responses to these infections, we have cloned and characterized classical MHC class I genes of pig-tailed macaques and have identified 19 MHC class I alleles (Mane) orthologous to rhesus macaque MHC-A, -B, and -I genes. Both Mane-A and Mane-B loci were found to be duplicated, and no MHC-C locus was detected. Pig-tailed and rhesus macaque MHC-A alleles form two groups, as defined by 14 polymorphisms affecting mainly their B peptide-binding pockets. Furthermore, an analysis of multiple pig-tailed monkeys revealed the existence of three MHC-A haplotypes. The distribution of these haplotypes in various Old World monkeys provides new insights about MHC-A evolution in nonhuman primates. An examination of B and F peptide-binding pockets in rhesus and pig-tailed macaques suggests that their MHC-B molecules present few common peptides to their respective CTLs.  相似文献   

18.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

19.
In HIV-infected humans and SIV-infected rhesus macaques, host genes influence viral containment and hence the duration of the disease-free latency period. Our knowledge of the rhesus monkey immunogenetics, however, is limited. In this study, we describe partial cDNA sequences of five newly discovered rhesus macaque (Mamu) class I alleles and PCR-based typing techniques for the novel and previously published Mhc class I alleles. Using 15 primer pairs for PCR-based typing and DNA sequence analysis, we identified at least 21 Mhc class I alleles in a cohort of 91 SIV-infected macaques. The results confirm the presence of multiple class I genes in rhesus macaques. Of these alleles, Mamu-A*01 was significantly associated with lower set-point viral load and prolonged survival time. Mamu-A*1303 was associated with longer survival and a "novel" Mhc class I allele with lower set-point viral load. The alleles are frequent in rhesus macaques of Indian origin (12-22%). In addition, survival probability of individual SIV-infected rhesus monkeys increased with their number of alleles considered to be associated with longer survival. The results contribute to improve the interpretation and quality of preclinical studies in rhesus monkeys.  相似文献   

20.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号