首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Pseudomonas aeruginosa exoenzyme S ADP-ribosylates several GTP-binding proteins of apparent Mr = 23,000-25,000. Exoenzyme S absolutely requires a soluble eukaryotic protein, which we have named FAS (Factor Activating exoenzyme S), in order to ADP-ribosylate all substrates. The rate of ADP-ribosylation of all exoenzyme S substrates increases linearly with time and with the FAS concentration. FAS is wide-spread in eukaryotes but appears to be absent from prokaryotes. We have estimated the molecular mass of the protein to be approximately 29,000 daltons and its pI to be 4.3-4.5. Several bacterial toxins share this sort of requirement for the presence of a eukaryotic protein for enzymic activity. In particular, FAS resembles ADP-ribosylation factor, a 21,000-dalton GTP-binding protein which performs an analogous function for cholera toxin. However, we can find no evidence that FAS binds GTP. In the presence of FAS, exoenzyme S ADP-ribosylates several proteins in lysates of P. aeruginosa. The requirement for a eukaryotic protein for enzymic activity, which is common to several bacterial toxins, may be a device to identify the eukaryotic environment and to ensure that the enzymes cannot function within and harm the toxin-producing bacteria.  相似文献   

2.
Mutagenesis techniques were used to replace two loop regions within the catalytic domain of Pseudomonas aeruginosa exotoxin A (ETA) with functionally silent polyglycine loops. The loop mutant proteins, designated polyglycine Loops N and C, were both less active than the wild-type enzyme. However, the polyglycine Loop C mutant protein, replaced with the Gly(483)-Gly(490) loop, showed a much greater loss of enzymatic activity than the polyglycine Loop N protein. The former mutant enzyme exhibited an 18,000-fold decrease in catalytic turnover number (k(cat)), with only a marginal effect on the K(m) value for NAD(+) and the eukaryotic elongation factor-2 binding constant. Furthermore, alanine-scanning mutagenesis of this active-site loop region revealed the specific pattern of a critical region for enzymatic activity. Binding and kinetic data suggest that this loop modulates the transferase activity between ETA and eukaryotic elongation factor-2 and may be responsible for stabilization of the transition state for the reaction. Sequence alignment and molecular modeling also identified a similar loop within diphtheria toxin, a functionally and structurally related class A-B toxin. Based on these results and the similarities between ETA and diphtheria toxin, we propose that this catalytic subregion represents the first report of a diphthamide-specific ribosyltransferase structural motif. We expect these findings to further the development of pharmaceuticals designed to prevent ETA toxicity by disrupting the stabilization of the transition state during the ADP-ribose transfer event.  相似文献   

3.
Biochemical and genetic techniques have provided considerable insight into the structure-function relationship of one of the ADP-ribosyl transferases produced by Pseudomonas aeruginosa, exotoxin A. Exotoxin A contains a typical prokaryotic signal sequence which, in combination with the first 30 amino-terminal amino acids of the mature protein, is sufficient for exotoxin A secretion from P. aeruginosa. Determination of the nucleotide sequence and crystalline structure of this prokaryotic toxin allowed a molecular model to be constructed. The model reveals three structural domains of exotoxin A. Analysis of the identified domains shows that the amino-terminal domain (domain I) is involved in recognition of eukaryotic target cells. Furthermore, the central domain (domain II) is involved in secretion of exotoxin A into the periplasm of Escherichia coli. Evidence also implicates the role of domain II in translocation of exotoxin A from the eukaryotic vesicle which contains the toxin after it becomes internalized into susceptible eukaryotic cells via receptor-mediated endocytosis. The carboxy-terminal portion of exotoxin A (domain III) encodes the enzymatic activity of the molecule. The structure of this domain includes a cleft which is hypothesized to be the catalytic site of the enzyme. Several residues within domain III have been identified as having a direct role in catalysis, while others are hypothesized to play an important structural role.  相似文献   

4.
Pseudomonas aeruginosa delivers the toxin ExoU to eukaryotic cells via a type III secretion system. Intoxication with ExoU is associated with lung injury, bacterial dissemination and sepsis in animal model and human infections. To search for ExoU targets in a genetically tractable system, we used controlled expression of the toxin in Saccharomyces cerevisiae. ExoU was cytotoxic for yeast and caused a vacuolar fragmentation phenotype. Inhibitors of human calcium-independent (iPLA(2)) and cytosolic phospholipase A(2) (cPLA(2)) lipase activity reduce the cytotoxicity of ExoU. The catalytic domains of patatin, iPLA(2) and cPLA(2) align or are similar to ExoU sequences. Site-specific mutagenesis of predicted catalytic residues (ExoUS142A or ExoUD344A) eliminated toxicity. ExoU expression in yeast resulted in an accumulation of free palmitic acid, changes in the phospholipid profiles and reduction of radiolabeled neutral lipids. ExoUS142A and ExoUD344A expressed in yeast failed to release palmitic acid. Recombinant ExoU demonstrated lipase activity in vitro, but only in the presence of a yeast extract. From these data we conclude that ExoU is a lipase that requires activation or modification by eukaryotic factors.  相似文献   

5.
The exoenzyme S regulon of Pseudomonas aeruginosa   总被引:13,自引:7,他引:6  
Pseudomonas aeruginosa can cause severe life-threatening infections in which the bacterium disseminates rapidly from epithelial colonization sites to the bloodstream. In experimental models, the ability of P . aeruginosa to disseminate is linked to epithelial injury, in vitro cytotoxicity and expression of the exoenzyme S regulon. Using the expression of ExoS as a model, a series of genes that are important for regulation, secretion and, perhaps, intoxication of eukaryotic cells have been identified. Proteins encoded by the exoenzyme S regulon and the Yersinia Yop virulon show a high level of amino acid homology, suggesting that P . aeruginosa may use a contact-mediated translocation mechanism to transfer anti-host factors directly into eukaryotic cells. Potential anti-host factors that may disrupt eukaryotic signal transduction through ADP-ribosylation include ExoS and ExoT. Expression of ExoU, another candidate anti-host factor, has been correlated with acute cytotoxicity and lung epithelial injury. Members of the exoenzyme S regulon represent only a portion of the virulence factor arsenal possessed by P . aeruginosa . It will be important to understand how the exoenzyme S regulon contributes to pathogenesis and whether these factors could serve as potential therapeutic targets.  相似文献   

6.
Abstract The RTX (repeats in toxin) cytolytic toxins r represent a family of important virulence factors that have disseminated widely among Gram-negative bacteria. They are characterised by a series of glycine-rich repeat units at the C-terminal end of each protein. They also have other features in common. Secretion from the cell occurs without a periplasmic intermediate by a novel mechanism which involves recognition of a signal sequence at the C-terminus of the toxin by membrane-associated proteins that export the toxin directly to the outside of the cell. The structural gene for each protein encodes an inactive toxin which is modified post-translationally to an active cytotoxic form by another gene product before secretion. The genes for toxin synthesis, activation and secretion are for the most part grouped together on the chromosome and form an operon. The toxins all create pores in the cell membrane of target cells leading to eventual cell lysis and they appear to require Ca2+ for cytotoxic activity. Although the toxins have a similar mode of action, they vary in target cell specificity. Some are cytotoxic for a wide variety of eukaryotic cell types while others exhibit precise target cell specificity and are only active against leukocytes from certain host species. The characteristic glycine-rich repeat units have been identified in other exoproteins besides those with cytotoxic activity and it is likely that the novel secretory mechanism has been harnessed by a variety of pathogens to release important virulence-associated factors from the cell or to locate them on the cell surface.  相似文献   

7.
The RTX (repeats in toxin) cytolytic toxins represent a family of important virulence factors that have disseminated widely among Gram-negative bacteria. They are characterised by a series of glycine-rich repeat units at the C-terminal end of each protein. They also have other features in common. Secretion from the cell occurs without a periplasmic intermediate by a novel mechanism which involves recognition of a signal sequence at the C-terminus of the toxin by membrane-associated proteins that export the toxin directly to the outside of the cell. The structural gene for each protein encodes an inactive toxin which is modified post-translationally to an active cytotoxic form by another gene product before secretion. The genes for toxin synthesis, activation and secretion are for the most part grouped together on the chromosome and form an operon. The toxins all create pores in the cell membrane of target cells leading to eventual cell lysis and they appear to require Ca2+ for cytotoxic activity. Although the toxins have a similar mode of action, they vary in target cell specificity. Some are cytotoxic for a wide variety of eukaryotic cell types while others exhibit precise target cell specificity and are only active against leukocytes from certain host species. The characteristic glycine-rich repeat units have been identified in other exoproteins besides those with cytotoxic activity and it is likely that the novel secretory mechanism has been harnessed by a variety of pathogens to release important virulence-associated factors from the cell or to locate them on the cell surface.  相似文献   

8.
绿脓杆菌(Pseudomonas aeruginosa)利用六型分泌系统(T6SS)向其他竞争性细菌分泌毒素效应分子Tse2,这是一种新发现的绿脓杆菌获得生存优势的分子机制.为了避免同类间的误杀,绿脓杆菌合成一种特异结合Tse2的抑制蛋白Tsi2来保护自己.序列分析显示,Tsi2是绿脓杆菌特有的一种新型类抗毒素蛋白.我们利用SAD方法成功地解析了Tsi2 1.8Å分辨率的晶体结构.Tsi2的三维结构采用一种规则的卷曲螺旋的结构特征,这是抗毒素分子中的一种全新的折叠方式,不同于经典的抗毒素分子在没有结合毒素分子状态下采用无规则构象的结构特征;二聚体是Tsi2的功能单位,二聚体内两个Tsi2单体通过广阔的疏水相互作用紧密结合,形成“夹子”状独特的二聚体组装方式;位于二聚体界面上的两个凹槽分别结合对称分子的两段螺旋,提供了Tsi2与Tse2结合可能的分子部位.该研究工作结果对于认识Tsi2抗毒素蛋白的分子本质,揭示其发挥抗毒素活性的结构基础,并为进一步开展Tse2-Tsi2复合物的结构与功能研究奠定了坚实的基础.  相似文献   

9.
Several bacterial toxins target Rho GTPases, which constitute molecular switches in several signaling processes and master regulators of the actin cytoskeleton. The biological activities of Rho GTPases are blocked by C3-like transferases, which ADP-ribosylate Rho at Asn41, but not Rac or Cdc42. Large clostridial cytotoxins (e. g., Clostridium difficile toxin A and B) glucosylate Rho GTPases at Thr37 (Rho) or Thr35 (Rac/Cdc42), thereby inhibiting Rho functions by preventing effector coupling. The 'injected' toxins ExoS, YopE and SptP from Pseudomonas aeruginosa, Yersinia and Salmonella ssp., respectively, which are transferred into the eukaryotic target cells by the type-III secretion system, inhibit Rho functions by acting as Rho GAP proteins. Rho GTPases are activated by the cytotoxic necrotizing factors CNF1 and CNF2 from Escherichia coli and by the dermonecrotizing toxin DNT from B. bronchiseptica. These toxins deamidate/transglutaminate Gln63 of Rho to block the intrinsic and GAP-stimulated GTP hydrolysis, thereby constitutively activating the GTPases. Rho GTPases are also activated by SopE, a type-III system injected protein from Salmonella ssp., that acts as a GEF protein.  相似文献   

10.
Diphtheria toxin has been well characterized in terms of its receptor binding and receptor mediated endocytosis. However, the precise mechanism of the cytosolic release of diphtheria toxin fragment A from early endosomes is still unclear. Various reports differ regarding the requirement for cytosolic factors in this process. Here, we present data indicating that the distribution of actin filaments due to cytochalasin D action enhances the retention of diphtheria toxin in early endosomes. Treating cells with cytochalasin D reduces the cytosolic fragment A activity and leads to changes in the intracellular distribution and size of early endosomes with toxin cargo. F-actin and eukaryotic elongation factor 2 can promote fragment A release from toxin-loaded early endosomes in an in vitro translocation system. Moreover, these proteins bind to toxin-loaded early endosomes in vitro and promote each other's binding. They are thus thought to be involved in the cytosolic release of fragment A. Finally, ADP-ribosylation of eukaryotic elongation factor 2 is shown to inhibit fragment A release and, via a feed-back mechanism, to account for the minute amounts of fragment A normally found in the cytosol.  相似文献   

11.
Sato H  Feix JB  Frank DW 《Biochemistry》2006,45(34):10368-10375
Pseudomonas aeruginosa is an opportunistic pathogen that uses a type III secretion system and four effector proteins to avoid innate immune responses. ExoS, ExoT, ExoY, and ExoU all possess enzymatic activities that disrupt host cellular physiology and prevent bacterial clearance by host defense mechanisms. The specificity of these toxins for eukaryotic cells depends on the presence of substrate targets and eukaryotic cofactors responsible for effector activation. We used a combined biochemical and proteomic approach to identify Cu(2+), Zn(2+)-superoxide dismutase (SOD1) as a cofactor that activates the phospholipase activity of ExoU. Recombinant ExoU (rExoU) was activated in a dose-dependent manner by either bovine liver SOD1 or the yeast ortholog, Sod1p, but not by either Fe or Mn-containing SODs from E. coli or small molecule SOD mimetics. Inhibitor studies indicated that SOD enzymatic activity was not required for the activation of rExoU. The physical interaction between rExoU and SOD was demonstrated by capture techniques using either of the two proteins immobilized onto the solid phase. Identification of SOD as a cofactor allowed us to develop a new assay using a fluorescent substrate to measure the phospholipase activity of rExoU. The ability of SOD to act as a cytoplasmic cofactor stimulating ExoU phospholipase activity has significant implications for the biological activity of the toxin. Further elucidation of the structural mechanism of ExoU activation by this eukaryotic cofactor may provide a rational approach to the design of inhibitors that can diminish tissue damage during infection by ExoU-producing strains of P. aeruginosa.  相似文献   

12.
Understanding the mechanism of action of pore-forming toxins (PFTs) produced by different bacteria, as well as the host responses to toxin action, would provide ways to deal with these pathogenic bacteria. PFTs affect the permeability of target cells by forming pores in their plasma membrane. Target organisms may overcome these effects by triggering intracellular responses that have evolved as defense mechanisms to PFT. Among them it is well documented that stress-activated protein kinases, and specially MAPK p38 pathway, play a crucial role triggering defense responses to several PFTs in different eukaryotic cells. In this review we describe different intracellular effects induced by PFTs in eukaryotic cells and highlight diverse responses activated by p38 pathway.  相似文献   

13.
Roy V  Ghani K  Caruso M 《PloS one》2010,5(12):e15753
Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments.  相似文献   

14.
Quorum sensing is an important mechanism for the regulation of genes in many Gram-negative and Gram-positive bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, the absence of one or more components of the quorum-sensing system results in a significant reduction in virulence. Recent advances in the past year have demonstrated that the quorum-sensing signal molecule 3O-C(12)-HSL is also a potent stimulator of multiple eukaryotic cells and thus may alter the host response during P. aeruginosa infections. Therefore, via the regulation of multiple factors and the production of 3O-C(12)-HSL, quorum-sensing systems have a significant effect on the virulence of the bacteria and also on how the host responds to P. aeruginosa infections.  相似文献   

15.
Intracellular targeting of the Pseudomonas aeruginosa toxins, such as exoenzyme S (ExoS), cause cell death, as well as morphological and physiological changes in various tissue culture cells and animal models. In this report we have investigated the mechanism behind ExoS-mediated cell death. In order to address this issue, we have used cell lines expressing activated forms of various components of the Ras signalling pathway in order to evaluate the importance of the Ras pathway for viability and survival upon ExoS infection. Here we show that activated Ras is able to protect cells against cell death, regardless of whether it has been ADP-ribosylated by ExoS. Further, an activated form of protein kinase B (PKB)/Akt also leads to decreased level of cell death in response to ExoS infection, indicating that an important ExoS survival target is located upstream of Raf-1 and PKB/Akt. Moreover, we show that ExoS infection inhibits phosphorylation of FOXO3a, and induces caspase-3 activity, which are hallmarks for induction of cell death. In conclusion, we suggest that Ras proteins are an important cellular target for the P. aeruginosa toxin ExoS, which induces cell death during pathogenesis as a means of defending the bacterium against eukaryotic phagocytosis.  相似文献   

16.
The molecular nature of the protein-protein interactions between the catalytic domain from Pseudomonas aeruginosa exotoxin A (PE24H) and its protein substrate, eukaryotic elongation factor-2 (eEF-2) were probed using a fluorescence resonance energy transfer method. Single cysteine mutant proteins of PE24H were prepared and site-specifically labeled with the donor fluorophore IAEDANS (5-(2-iodoacetylaminoethylamino)-1-napthalenesulfonic acid), whereas eEF-2 was labeled with the acceptor fluorophore fluorescein. The association was found to be independent of ionic strength and of the co-substrate, NAD(+) but dependent upon pH. The lack of requirement for NAD(+) to produce the toxin-eEF-2 complex demonstrates that the catalytic process is a random order mechanism, thereby disputing the current model. The previously observed pH dependence for catalytic function can be assigned to the toxin-eEF-2 binding event, as the pH dependence of binding observed in this study showed a strong correlation with enzymatic activity. The ability of the toxin to bind eEF-2 with bound GTP/GDP was assessed using nonhydrolyzable analogues. The results from the substrate binding and catalytic activity experiments indicate that PE24H is able to interact and bind with eEF-2 in all of its guanyl nucleotide-induced conformational states. Thus, the toxin ribosylates eEF-2 regardless of the nucleotide-charged state of eEF-2. These results represent the first detailed characterization of the molecular details and physiological conditions governing this protein-protein interaction.  相似文献   

17.
Toxin A is excreted by Pseudomonas aeruginosa as a mature 66,583-dalton protein. In this study, we used molecular cloning and deletion analysis to define specific regions of the toxin molecule involved in its excretion. Subclones that express either the amino terminus, the carboxy terminus, or toxin A molecules with internal deletions were constructed. The hypotoxigenic mutant PAO-T1 was used as a host for the expression of the toxin constructs. When overexpressed (by the presence of extra copies of the toxin A-positive regulatory gene, regA, in trans), toxin A-cross-reactive materials produced by most of these constructs were detected in the supernatant of PAO-T1. The supernatant of P. aeruginosa PAO-T1 contained proteolytic activity that degraded toxin A-derived products but not the intact toxin molecule. A single SalI intragenic deletion (coding for the leader peptide, the first 30 amino acids, and the last 305 amino acids of the toxin) resulted in a relatively stable product in the supernatant of PAO-T1. The product of the carboxy terminus construct (which codes for the last 305 amino acids of the toxin) was detected in the lysate of PAO-T1 only. The data suggest that the amino terminus region of toxin A (the leader peptide plus the first 30 amino acid of the mature protein) is sufficient for its excretion, and that a second region, amino acids 309 through 413, protects an internally truncated toxin A molecule from the proteolytic activity in the supernatant of P. aeruginosa PAO-T1.  相似文献   

18.
The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells by a unique mechanism that consists in a calcium-dependent, direct translocation of the CyaA catalytic domain across the plasma membrane of the target cells. CyaA possesses a series of a glycine- and aspartate-rich nonapeptide repeats (residues 1006-1613) of the prototype GGXG(N/D)DX(L/I/F)X (where X represents any amino acid) that are characteristic of the RTX (repeat in toxin) family of bacterial cytolysins. These repeats are arranged in a tandem fashion and may fold into a characteristic parallel beta-helix or beta-roll motif that constitutes a novel type of calcium binding structure, as revealed by the three-dimensional structure of the Pseudomonas aeruginosa alkaline protease. Here we have characterized the structure-function relationships of various fragments from the CyaA RTX subdomain. Our results indicate that the RTX functional unit includes both the tandem repeated nonapeptide motifs and the adjacent polypeptide segments, which are essential for the folding and calcium responsiveness of the RTX module. Upon calcium binding to the RTX repeats, a conformational rearrangement of the adjacent non-RTX sequences may act as a critical molecular switch to trigger the CyaA entry into target cells.  相似文献   

19.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that stimulate the ADP-ribosyltransferase activity of cholera toxin in vitro. ARFs are highly conserved, ubiquitously expressed in eukaryotic cells and appear to be involved in vesicular protein transport. The two yeast ARFs are > 60% identical to mammalian ARFs and are essential for cell viability (Stearns, T., Kahn, R. A., Botstein, D., and Hoyt, M. A. (1990) Mol. Cell. Biol. 10, 6690-6699). Although the two yeast ARF proteins are 96% identical in amino acid sequence, the yeast ARF1 gene is constitutively expressed, whereas the ARF2 gene is repressed by glucose. Human ARF5 and ARF6 and a Giardia ARF differ substantially in size and amino acid identity from other mammalian and eukaryotic ARFs but will, as befits their designation, activate cholera toxin. Expression of human ARF5, ARF6, or Giardia ARF cDNA rescued the lethal yeast ARF double mutant (arf1, arf2). Strains rescued by human ARF5, ARF6, or Giardia ARF grew much more slowly than wild-type yeast or strains rescued with yeast ARF1. We infer from the impaired growth of these rescued strains that the homologous ARFs may have specific targeting information that does not interact effectively or efficiently with the yeast protein membrane trafficking system.  相似文献   

20.
eEF2 (eukaryotic elongation factor 2) contains a post-translationally modified histidine residue, known as diphthamide, which is the specific ADP-ribosylation target of diphtheria toxin, cholix toxin and Pseudomonas aeruginosa exotoxin A. Site-directed mutagenesis was conducted on residues within the diphthamide-containing loop (Leu693-Gly703) of eEF2 by replacement with alanine. The purified yeast eEF2 mutant proteins were then investigated to determine the role of this loop region in ADP-ribose acceptor activity of elongation factor 2 as catalysed by exotoxin A. A number of single alanine substitutions in the diphthamide-containing loop caused a significant reduction in the eEF2 ADP-ribose acceptor activities, including two strictly conserved residues, His694 and Asp696. Analysis by MS revealed that all of these mutant proteins lacked the 2'-modification on the His699 residue and that eEF2 is acetylated at Lys509. Furthermore, it was revealed that the imidazole ring of Diph699 (diphthamide at position 699) still functions as an ADP-ribose acceptor (albeit poorly), even without the diphthamide modification on the His699. Therefore, this diphthamide-containing loop plays an important role in the ADP-ribosylation of eEF2 catalysed by toxin and also for modification of His699 by the endogenous diphthamide modification machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号