首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation, migration, and angiogenesis, the ALK-1/Smad 1/5/8 and ALK-5/Smad2/3 pathways. Endoglin is a co-receptor predominantly expressed in endothelial cells that participates in TGFbeta-mediated signaling with ALK-1 and ALK-5 and regulates critical aspects of cellular and biological responses. The embryonic lethal phenotype of knock-out mice because of defects in angiogenesis and disease-causing mutations resulting in human vascular diseases both support essential roles for endoglin, ALK-1, and ALK-5 in the vasculature. However, the mechanism by which endoglin mediates TGF-beta signaling through ALK-1 and ALK-5 has remained elusive. Here we describe a novel interaction between endoglin and GIPC, a scaffolding protein known to regulate cell surface receptor expression and trafficking. Co-immunoprecipitation and immunofluorescence confocal studies both demonstrate a specific interaction between endoglin and GIPC in endothelial cells, mediated by a class I PDZ binding motif in the cytoplasmic domain of endoglin. Subcellular distribution studies demonstrate that endoglin recruits GIPC to the plasma membrane and co-localizes with GIPC in a TGFbeta-independent manner, with GIPC-promoting cell surface retention of endoglin. Endoglin specifically enhanced TGF-beta1-induced phosphorylation of Smad 1/5/8, increased a Smad 1/5/8 responsive promoter, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with GIPC. These studies define a novel mechanism for the regulation of endoglin signaling and function in endothelial cells and demonstrate a new role for GIPC in TGF-beta signaling.  相似文献   

2.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

3.
4.
Transforming growth factor-beta (TGF-beta) signaling in endothelial cells is able to modulate angiogenesis and vascular remodeling, although the underlying molecular mechanisms remain poorly understood. Endoglin and ALK-1 are components of the TGF-beta receptor complex, predominantly expressed in endothelial cells, and mutations in either endoglin or ALK-1 genes are responsible for the vascular dysplasia known as hereditary hemorrhagic telangiectasia. Here we find that the extracellular and cytoplasmic domains of the auxiliary TGF-beta receptor endoglin interact with ALK-1 (a type I TGF-beta receptor). In addition, endoglin potentiates TGF-beta/ALK1 signaling, with the extracellular domain of endoglin contributing to this functional cooperation between endoglin and ALK-1. By contrast, endoglin appears to interfere with TGF-beta/ALK-5 signaling. These results suggest that the functional association of endoglin with ALK-1 is critical for the endothelial responses to TGF-beta.  相似文献   

5.
Smads are intracellular signaling mediators for TGF-beta superfamily. Smad1 and Smad5 are activated by BMP receptors. Here, we have cloned mouse Smad8 and functionally characterized its ability to transduce signals from BMP receptors. Constitutively active BMP type I receptors, ALK-3 and ALK-6, as well as ALK-2, were phosphorylated Smad8 and induced Smad8 interaction with Smad4. Nuclear translocation of Smad8 was stimulated by constitutively active BMP type I receptors. In contrast, constitutively active TGF-beta type I receptor, ALK-5, did not exhibit any action on Smad8. Smad8 and Smad4 cooperatively induced the promoter of Xvent2, a homeobox gene that responds specifically to BMP signaling. Dominant-negative Smad8 was shown to inhibit the increase of alkaline phosphatase activity induced by BMP-2 on pluripotent mesenchymal C3H10T1/2 and myoblastic C2C12 cell lines. The presence of Smad8 mRNA in mouse calvaria cells and osteoblasts suggests a role of Smad8 in the osteoblast differentiation and maturation.  相似文献   

6.
Kamiya Y  Miyazono K  Miyazawa K 《FEBS letters》2008,582(17):2496-2500
In mammals, two inhibitory Smads (I-Smads), Smad6 and Smad7, play pivotal roles in negative regulation of TGF-beta family signaling. Smad7 ubiquitously inhibits TGF-beta family signaling, whereas Smad6 inhibits signaling from the ALK-3/6 subfamily in preference to that from the ALK-1/2 and ALK-4/5/7 subfamilies of TGF-beta family type I receptors. In Drosophila, only one I-Smad, Dad, has been identified. Here we examined inhibitory effects of Dad on type I receptors in Drosophila. Dad inhibited Saxophone (ALK-1/2 orthologue) and Thickveins (ALK-3/6 orthologue) but not Baboon (ALK-4/5/7 orthologue). The differential modes of action of I-Smads in mammals and Drosophila are discussed.  相似文献   

7.
The generation of mice lacking specific components of the transforming growth factor-beta (TGF-beta) signal tranduction pathway shows that TGF-beta is a key player in the development and physiology of the cardiovascular system. Both pro- and anti-angiogenic properties have been ascribed to TGF-beta, for which the molecular mechanisms are unclear. Here we report that TGF-beta can activate two distinct type I receptor/Smad signalling pathways with opposite effects. TGF-beta induces phosphorylation of Smad1/5 and Smad2 in endothelial cells and these effects can be blocked upon selective inhibition of ALK1 or ALK5 expression, respectively. Whereas the TGF-beta/ALK5 pathway leads to inhibition of cell migration and proliferation, the TGF-beta/ALK1 pathway induces endothelial cell migration and proliferation. We identified genes that are induced specifically by TGF-beta-mediated ALK1 or ALK5 activation. Id1 was found to mediate the TGF-beta/ALK1-induced (and Smad-dependent) migration, while induction of plasminogen activator inhibitor-1 by activated ALK5 may contribute to the TGF-beta-induced maturation of blood vessels. Our results suggest that TGF-beta regulates the activation state of the endothelium via a fine balance between ALK5 and ALK1 signalling.  相似文献   

8.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   

9.
Endoglin is an endothelial-specific transforming growth factor beta (TGF-β) co-receptor essential for angiogenesis and vascular remodeling. Endoglin regulates a wide range of cellular processes, including cell adhesion, migration, and proliferation, through TGF-β signaling to canonical Smad and Smad-independent pathways. Despite its overall pro-angiogenic role in the vasculature, the underlying mechanism of endoglin action is poorly characterized. We previously identified β-arrestin2 as a binding partner that causes endoglin internalization from the plasma membrane and inhibits ERK signaling towards endothelial migration. In the present study, we examined the mechanistic role of endoglin and β-arrestin2 in endothelial cell proliferation. We show that endoglin impedes cell growth through sustained inhibition of ERK-induced c-Myc and cyclin D1 expression in a TGF-β-independent manner. The down-regulation of c-Myc and cyclin D1, along with growth-inhibition, are reversed when the endoglin/β-arrestin2 interaction is disrupted. Given that TGF-β-induced Smad signaling potently represses c-Myc in most cell types, our findings here show a novel mechanism by which endoglin augments growth-inhibition by targeting ERK and key downstream mitogenic substrates.  相似文献   

10.
Members of the transforming growth factor-beta (TGF-beta) superfamily regulate cell proliferation, differentiation, and apoptosis, controlling the development and maintenance of most tissues. TGF-beta signal is transmitted through the phosphorylation of Smad proteins by TGF-beta receptor serine/threonine kinase. During early tooth development, TGF-beta inhibits proliferation of enamel organ epithelial cells but the underlying molecular mechanisms are largely unknown. Here we tested the hypothesis that antagonistic effects between Smad2 and Smad7 regulate TGF-beta signaling during tooth development. Attenuation of Smad2 gene expression resulted in significant advancement of embryonic tooth development with increased proliferation of enamel organ epithelial cells, while attenuation of Smad7 resulted in significant inhibition of embryonic tooth development with increased apoptotic activity within enamel organ epithelium. These findings suggest that different Smads may have differential activities in regulating TGF-beta-mediated cell proliferation and death. Furthermore, functional haploinsufficiency of Smad2, but not Smad3, altered TGF-beta-mediated tooth development. The results indicate that Smads are critical factors in orchestrating TGF-beta-mediated gene regulation during embryonic tooth development. The effectiveness of TGF-beta signaling is highly sensitive to the level of Smad gene expression.  相似文献   

11.
12.
The inhibitory Smads, Smad6 and Smad7, play pivotal roles in negative regulation of transforming growth factor-beta (TGF-beta) family signaling as feedback molecules as well as mediators of cross-talk with other signaling pathways. Whereas Smad7 acts as a ubiquitous inhibitor of Smad signaling, Smad6 has been shown to effectively inhibit bone morphogenetic protein (BMP) signaling but only weakly TGF-beta/activin signaling. In the present study, we have found that Smad6 inhibits signaling from the activin receptor-like kinase (ALK)-3/6 subgroup in preference to that from the ALK-1/2 subgroup of BMP type I receptors. The difference is attributable to the interaction of Smad6 with these BMP type I receptors. The amino acid residues responsible for Smad6 sensitivity of ALK-3 were identified as Arg-238, Phe-264, Thr-265, and Ala-269, which map to the N-terminal lobe of the ALK-3 kinase domain. Although Smad6 regulates BMP signaling through multiple mechanisms, our findings suggest that interaction with type I receptors is a critical step in the function of Smad6.  相似文献   

13.
14.
15.
16.
Germ line mutations in one of two distinct genes, endoglin or ALK-1, cause hereditary hemorrhagic telangiectasia (HHT), an autosomal dominant disorder of localized angiodysplasia. Both genes encode endothelial cell receptors for the transforming growth factor beta (TGF-beta) ligand superfamily. Endoglin has homology to the type III receptor, betaglycan, although its exact role in TGF-beta signaling is unclear. Activin receptor-like kinase 1 (ALK-1) has homology to the type I receptor family, but its ligand and corresponding type II receptor are unknown. In order to identify the ligand and type II receptor for ALK-1 and to investigate the role of endoglin in ALK-1 signaling, we devised a chimeric receptor signaling assay by exchanging the kinase domain of ALK-1 with either the TGF-beta type I receptor or the activin type IB receptor, both of which can activate an inducible PAI-1 promoter. We show that TGF-beta1 and TGF-beta3, as well as a third unknown ligand present in serum, can activate chimeric ALK-1. HHT-associated missense mutations in the ALK-1 extracellular domain abrogate signaling. The ALK-1/ligand interaction is mediated by the type II TGF-beta receptor for TGF-beta and most likely through the activin type II or type IIB receptors for the serum ligand. Endoglin is a bifunctional receptor partner since it can bind to ALK-1 as well as to type I TGF-beta receptor. These data suggest that HHT pathogenesis involves disruption of a complex network of positive and negative angiogenic factors, involving TGF-beta, a new unknown ligand, and their corresponding receptors.  相似文献   

17.
18.
19.
20.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily that play important roles in bone formation, embryonic patterning, and epidermal-neural cell fate decisions. BMPs signal through pathway specific mediators such as Smads1 and 5, but the upstream regulation of BMP-specific Smads has not been fully characterized. Here we report the identification of SANE (Smad1 Antagonistic Effector), a novel protein with significant sequence similarity to nuclear envelop proteins such as MAN1. SANE binds to Smad1/5 and to BMP type I receptors and regulates BMP signaling. SANE specifically blocks BMP-dependent signaling in Xenopus embryos and in a mammalian model of bone formation but does not inhibit the TGF-beta/Smad2 pathway. Inhibition of BMP signaling by SANE requires interaction between SANE and Smad1, because a SANE mutant that does not bind Smad1 does not inhibit BMP signaling. Furthermore, inhibition appears to be mediated by inhibition of BMP-induced Smad1 phosphorylation, blocking ligand-dependent nuclear translocation of Smad1. These studies define a new mode of regulation for intracellular BMP/Smad1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号