首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
The liver-specific microRNA miR-122 is required for efficient hepatitis C virus (HCV) RNA replication both in cell culture and in vivo. In addition, nonhepatic cells have been rendered more efficient at supporting this stage of the HCV life cycle by miR-122 expression. This study investigated how miR-122 influences HCV replication in the miR-122-deficient HepG2 cell line. Expression of this microRNA in HepG2 cells permitted efficient HCV RNA replication and infectious virion production. When a missing HCV receptor is also expressed, these cells efficiently support viral entry and thus the entire HCV life cycle.  相似文献   

3.
Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkin's lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.  相似文献   

4.
The P body protein LSm1 stimulates translation and replication of hepatitis C virus (HCV). As the liver-specific microRNA-122 (miR-122) is required for HCV replication and is associated with P bodies, we investigated whether regulation of HCV by LSm1 involves miR-122. Here, we demonstrate that LSm1 contributes to activation of HCV internal ribosome entry site (IRES)-driven translation by miR-122. This role for LSm1 is specialized for miR-122 translation activation, as LSm1 depletion does not affect the repressive function of miR-122 at 3′ untranslated region (UTR) sites, or miR-122–mediated cleavage at a perfectly complementary site. We find that LSm1 does not influence recruitment of the microRNA (miRNA)-induced silencing complex to the HCV 5′UTR, implying that it regulates miR-122 function subsequent to target binding. In contrast to the interplay between miR-122 and LSm1 in translation, we find that LSm1 is not required for miR-122 to stimulate HCV replication, suggesting that miR-122 regulation of HCV translation and replication have different requirements. For the first time, we have identified a protein factor that specifically contributes to activation of HCV IRES-driven translation by miR-122, but not to other activities of the miRNA. Our results enhance understanding of the mechanisms by which miR-122 and LSm1 regulate HCV.  相似文献   

5.
DDX6 and other P-body proteins are required for efficient replication of Hepatitis C Virus (HCV) by unknown mechanisms. DDX6 has been implicated in miRNA induced gene silencing, and since efficient HCV replication and translation relies on the cellular microRNA, miR-122, we hypothesized that DDX6 had a role in the mechanism of action of miR-122. However, by using multiple HCV translation and replication assays we have found this is not the case. DDX6 silencing decreased HCV replication and translation, but did not affect the ability of miR-122 to stimulate HCV translation or promote HCV RNA accumulation. In addition, the negative effect of DDX6 silencing on HCV replication and translation was not dependent on miR-122 association with the HCV genome. Thus, DDX6 does not have a role in the activity of miR-122, and it appears that DDX6 and miR-122 modulate HCV through distinct pathways. This effect was seen in both Huh7.5 cells and in Hep3B cells, indicating that the effects are not cell type specific. Since infections by other viruses in the Flaviviridae family, including Dengue and West Nile Virus, also disrupt P-bodies and are regulated by DDX6, we speculate that DDX6 may have a common function that support the replication of several Flaviviruses.  相似文献   

6.
MicroRNA-122 (miR-122) enhances hepatitis C virus (HCV) fitness via targeting two sites in the 5'-untranslated region (UTR) of HCV. We used selective 2'-hydroxyl acylation analyzed by primer extension to resolve the HCV 5'-UTR's RNA secondary structure in the presence of miR-122. Nearly all nucleotides in miR-122 are involved in targeting the second site, beyond classic seed base pairings. These additional interactions enhance HCV replication in cell culture. To our knowledge, this is the first biophysical study of this complex to reveal the importance of 'tail' miR-122 nucleotide interactions.  相似文献   

7.
MicroRNA 122 (miR-122) increases the accumulation and translation of hepatitis C virus (HCV) RNA in infected cells through direct interactions with homologous sequences in the 5' untranslated region (UTR) of the HCV genome. Argonaute 2 (Ago2) is a component of the RNA-induced silencing complex (RISC) and mediates small interfering RNA (siRNA)-directed mRNA cleavage and microRNA translational suppression. We investigated the function of Ago2 in HCV replication to determine whether it plays a role in enhancing the synthesis and translation of HCV RNA that is associated with miR-122. siRNA-mediated depletion of Ago2 in human hepatoma cells reduced HCV RNA accumulation in transient HCV replication assays. The treatment did not adversely affect cell viability, as assessed by cell proliferation, capped translation, and interferon assays. These data are consistent with complementary roles for Ago2 and miR-122 in enhancing HCV RNA amplification. By using a transient HCV replication assay that is dependent on an exogenously provided mutant miR-122, we determined that Ago2 depletion still reduced luciferase expression and HCV RNA accumulation, independently of miR-122 biogenesis. miR-122 has previously been found to stimulate HCV translation. Similarly, Ago2 knockdown also reduced HCV translation, and its depletion reduced the ability of miR-122 to stimulate viral translation. These data suggest a direct role for Ago2 in miR-122-mediated translation. Finally, Ago2 was also necessary for efficient miR-122 enhancement of HCV RNA accumulation. These data support a model in which miR-122 functions within an Ago2-containing protein complex to augment both HCV RNA accumulation and translation.  相似文献   

8.
Functional sequestration of microRNA 122 (miR-122) by treatment with an oligonucleotide complementary to the miRNA results in long-lasting suppression of hepatitis C virus (HCV) viremia in primates. However, the safety of the constitutive miR-122 silencing approach to HCV inhibition is unclear, since miR-122 can modulate the expression of many host genes. In this study, a regulation system capable of specifically inhibiting miR-122 activity only upon HCV infection was developed. To this end, an allosteric self-cleavable ribozyme capable of releasing antisense sequence to miR-122 only in the presence of HCV nonstructural protein 5B was developed using in vitro selection method. The activity of the reporter construct with miR-122 target sequences at its 3' untranslated region and the expression of endogenous miR-122 target proteins were specifically stimulated through sequestration of miR-122 only in HCV replicon Huh-7 cells, but not in na?ve Huh-7 cells, when transfected with expression vector encoding the specific allosteric ribozyme. These findings indicate that miR-122 function can be specifically inhibited by the allosteric ribozyme only in HCV-replicating cells. Importantly, HCV replicon replication was efficiently inhibited by the allosteric ribozyme. This ribozyme could be useful for the specific, safe, and efficacious anti-HCV modulation.  相似文献   

9.
As the most abundant liver-specific microRNA (miRNA), miR-122 has been extensively studied for its role in the regulation of lipid metabolism, hepatocarcinogenesis and hepatitis C virus (HCV) replication, but little is known regarding its role in the replication of Hepatitis B virus (HBV), a highly prevalent hepatotropic virus that can cause life-threatening complications. In this study we examined the effects of antisense inhibition of miR-122 and transfection of a miR-122 mimic on HBV expression in hepatoma cells. The over-expression of miR-122 inhibited HBV expression, whereas the depletion of endogenous miR-122 resulted in increased production of HBV in transfected cells. We further found that the down-regulation of Heme oxygenase-1 (HO-1) by miR-122 plays a negative role in the miR-122-mediated inhibition of viral expression. Our study demonstrates the anti-HBV activity of miR-122, suggesting that therapies that increase miR-122 and HO-1 may be an effective strategy to limit HBV replication.  相似文献   

10.
The small GTPase Rab27a has been shown to control membrane trafficking and microvesicle transport pathways, in particular the secretion of exosomes. In the liver, high expression of Rab27a correlates with the development of hepatocellular carcinoma. We discovered that low abundance of Rab27a resulted in decreased hepatitis C virus (HCV) RNA and protein abundances in virus-infected cells. Curiously, both cell-associated and extracellular virus yield decreased in Rab27a depleted cells, suggesting that reduced exosome secretion did not cause the observed effect. Instead, Rab27a enhanced viral RNA replication by a mechanism that involves the liver-specific microRNA miR-122. Rab27a surrounded lipid droplets and was enriched in membrane fractions that harbor viral replication proteins, suggesting a supporting role for Rab27a in viral gene expression. Curiously, Rab27a depletion decreased the abundance of miR-122, whereas overexpression of miR-122 in Rab27a-depleted cells rescued HCV RNA abundance. Because intracellular HCV RNA abundance is enhanced by the binding of two miR-122 molecules to the extreme 5’ end of the HCV RNA genome, the diminished amounts of miR-122 in Rab27a-depleted cells could have caused destabilization of HCV RNA. However, the abundance of HCV RNA carrying mutations on both miR-122-binding sites and whose stability was supported by ectopically expressed miR-122 mimetics with compensatory mutations also decreased in Rab27a-depleted cells. This result indicates that the effect of Rab27a depletion on HCV RNA abundance does not depend on the formation of 5’ terminal HCV/miR-122 RNA complexes, but that miR-122 has a Rab27a-dependent function in the HCV lifecycle, likely the downregulation of a cellular inhibitor of HCV gene expression. These findings suggest that the absence of miR-122 results in a vulnerability not only to exoribonucleases that attack the viral genome, but also to upregulation of one more cellular factor that inhibit viral gene expression.  相似文献   

11.
The relationships among micro RNA-122 (miR-122) expression in the liver, hepatitis C virus (HCV) replication and hepatic damage were analyzed in three chimpanzees observed for 180 days after inoculation with HCV genotype 1a. Levels of miR-122 in the liver and serum were measured by real-time RT PCR in serial liver biopsies and serum samples. Hepatic miR-122 levels were normalized separately for each of three chimpanzees with small RNAs and microRNAs that are endogenous to the liver and are stably expressed. Two- to 4-fold rise in hepatic miR-122 levels was observed at the onset of HCV infection (the first 4 weeks) when HCV titers in the liver and serum increased rapidly in all three chimpanzees in concordance with in vitro data indicating the miR-122 significance for HCV replication. Between 10 to 14 weeks after inoculation, when hepatic and serum HCV RNA titers exceeded 3 logs and alanine aminotransferase (ALT) activity was elevated, hepatic miR-122 levels were in decline. Cumulative data derived from all three chimpanzees from 180 days of observation documented an inverse (negative) correlation between hepatic miR-122 and HCV RNA in the liver and serum and positive correlation between level of serum miR-122 and HCV replication. Subsequent rise of miR-122 level during HCV clearance and ALT normalization suggested a tri-phasic occurrence of the relationship among hepatic miR-122 expression, HCV replication and hepatic destruction, which was the most apparent in one chimpanzee but less evident in two other animals. In vivo kinetics of hepatic and serum miR-122, HCV replication and hepatic destruction reflects complexities of the virus-host interaction during the acute phase of HCV infection.  相似文献   

12.
MicroRNA 122 (miR-122) facilitates hepatitis C virus (HCV) replication by recruiting an RNA-induced silencing complex (RISC)-like complex containing argonaute 2 (Ago2) to the 5' end of the HCV genome, thereby stabilizing the viral RNA. This requires base pairing between the miR-122 "seed sequence" (nucleotides [nt] 2 to 8) and two sequences near the 5' end of the HCV RNA: S1 (nt 22 to 28) and S2 (nt 38 to 43). However, recent reports suggest that additional base pair interactions occur between HCV RNA and miR-122. We searched 606 sequences from a public database (genotypes 1 to 6) and identified two conserved, putatively single-stranded RNA segments, upstream of S1 (nt 2 and 3) and S2 (nt 30 to 34), with potential for base pairing to miR-122 (nt 15 and 16 and nt 13 to 16, respectively). Mutagenesis and genetic complementation experiments confirmed that HCV nt 2 and 3 pair with nt 15 and 16 of miR-122 bound to S1, while HCV nt 30 to 33 pair with nt 13 to 16 of miR-122 at S2. In genotype 1 and 6 HCV, nt 4 also base pairs with nt 14 of miR-122. These 3' supplementary base pair interactions of miR-122 are functionally important and are required for Ago2 recruitment to HCV RNA by miR-122, miR-122-mediated stabilization of HCV RNA, and production of infectious virus. However, while complementary mutations at HCV nt 30 and 31 efficiently rescued the activity of a 15C,16C miR-122 mutant targeting S2, similar mutations at nt 2 and 3 failed to rescue Ago2 recruitment at S1. These data add to the current understanding of miR-122 interactions with HCV RNA but indicate that base pairing between miR-122 and the 5' 43 nt of the HCV genome is more complex than suggested by existing models.  相似文献   

13.
Hepatitis C virus (HCV) RNA forms an unusual interaction with human microRNA-122 (miR-122) that promotes viral RNA accumulation in cultured human liver cells and in the livers of infected chimpanzees. GB virus B (GBV-B) is a hepatotropic virus and close relative of HCV. Thus, GBV-B has been used as a surrogate system to study HCV amplification in cultured cells and in infected tamarins. It was discovered that the 5′-terminal sequences of GBV-B RNA, like HCV RNA, forms an Argonaute 2-mediated complex with two miR-122 molecules that are essential for accumulation of GBV-B subgenomic replicon RNA. However, sequences in miR-122 that anneal to each viral RNA genome were different, suggesting distinct overall structural features in HCV:miR-122 and GBV-B:miR-122 complexes. Surprisingly, a deletion that removed both miR-122 binding sites from the subgenomic GBV-B RNAs rendered viral RNA amplification independent from miR-122 and Argonaute 2. This finding suggests that structural features at the end of the viral genome dictate whether miR-122 is required to aid in maintaining viral RNA abundance.  相似文献   

14.
Heterogeneous ribonucleoprotein K (hnRNP K) binds to the 5′ untranslated region of the hepatitis C virus (HCV) and is required for HCV RNA replication. The hnRNP K binding site on HCV RNA overlaps with the sequence recognized by the liver-specific microRNA, miR-122. A proteome chip containing ∼17,000 unique human proteins probed with miR-122 identified hnRNP K as one of the strong binding proteins. In vitro kinetic study showed hnRNP K binds miR-122 with a nanomolar dissociation constant, in which the short pyrimidine-rich residues in the central and 3′ portion of the miR-122 were required for hnRNP K binding. In liver hepatocytes, miR-122 formed a coprecipitable complex with hnRNP K. High throughput Illumina DNA sequencing of the RNAs precipitated with hnRNP K was enriched for mature miR-122. SiRNA knockdown of hnRNP K in human hepatocytes reduced the levels of miR-122. These results show that hnRNP K is a cellular protein that binds and affects the accumulation of miR-122. Its ability to also bind HCV RNA near the miR-122 binding site suggests a role for miR-122 recognition of HCV RNA.MicroRNAs (miRNAs) are a class of noncoding RNA of ∼22-nucleotides in length that can regulate gene expression by either targeting RNA for degradation or suppressing their translation through base pairing to the RNAs (1). Since their discovery in 1993 in Caenorhabditis elegans, miRNAs have been found in many species and are involved in the regulation of proliferation, differentiation, apoptosis, and development (1, 2). Moreover, miRNAs are also critical factors in the development of cancers, neurodegenerative diseases, and infectious diseases (3).MiR-122 is a highly abundant RNA in hepatocytes that regulates lipid metabolism, regeneration, and neoplastic transformation (46). In addition, miR-122 is required for the replication of the hepatitis C virus (HCV), a positive-strand RNA virus that infects over 170 million people worldwide (79). MiR-122 binds to a conserved sequence in the 5′ untranslated region (UTR) of the HCV RNA to increase the stability of the HCV RNA (10). Silencing of miR-122 can abolish HCV RNA accumulation in non-human primates (11). The expression of human miR-122 in non-hepatic cells can confer the ability to replicate HCV RNA (12). MiR-122 is one of the most critical host factors for HCV replication.We previously reported that the HCV RNA sequence that anneals to miR-122 is recognized by the heterogeneous ribonucleoprotein K (hnRNP K), a multifunctional RNA-binding protein known to be involved in RNA processing, translation, and the replication of several RNA viruses (1315). In an unbiased screen for proteins from human proteome chips containing over 17,000 proteins, we identified 40 proteins that bind mature miR-122, including hnRNP K. Recombinant hnRNP K recognizes short pyrimidine sequences in miR-122 in vitro and a similar sequence in the HCV 5′ UTR. In hepatocytes endogenous hnRNP K can form a coprecipitable complex with miR-122, whether or not the cells contain replicating HCV. HnRNP K is thus a protein that binds a mature microRNA.  相似文献   

15.
16.
microRNA-122(miR-122)是一种肝脏特异性微小RNA,与丙型肝炎病毒(HCV)的复制和感染及肝细胞癌(HCC)的发生密切相关。近年来,科研人员关于miR-122的研究已取得了较大进展。在此,我们就miR-122与HCV复制和HCC的相关关系等方面的研究进展做简要综述。  相似文献   

17.
18.
miR-122是在肝脏特异高表达的一种microRNA。研究表明:生理状态下,miR-122 在调控肝脏的细胞发育、诱导细胞分化、调节细胞代谢、参与肝细胞应急应答等生命活动过程中发挥重要作用;而在病理状态下,miR-122 与丙型肝炎病毒(HCV)和肝细胞肝癌(HCC)密切相关,可能促进HCV RNA 复制,并在HCC发生、发展过程中发挥抑癌基因样作用,可能对HCC 临床诊断和预后具有重要价值。鉴于miR-122 参与调控肝脏生理及肝脏重大疾病的发生、发展等过程,文章详细阐述并讨论miR-122 在肝脏中的生物学特性和功能,以及可能的作用机制。肝脏特异性miR-122 有可能作为治疗人类肝脏疾病的关键靶点。  相似文献   

19.
20.
Hepatitis C virus (HCV) predominantly infects human hepatocytes, although extrahepatic virus reservoirs are being discussed. Infection of cells is initiated via cell-free and direct cell-to-cell transmission routes. Cell type-specific determinants of HCV entry and RNA replication have been reported. Moreover, several host factors required for synthesis and secretion of lipoproteins from liver cells, in part expressed in tissue-specific fashion, have been implicated in HCV assembly. However, the minimal cell type-specific requirements for HCV assembly have remained elusive. Here we report that production of HCV trans-complemented particles (HCVTCP) from nonliver cells depends on ectopic expression of apolipoprotein E (ApoE). For efficient virus production by full-length HCV genomes, microRNA 122 (miR-122)-mediated enhancement of RNA replication is additionally required. Typical properties of cell culture-grown HCV (HCVcc) particles from ApoE-expressing nonliver cells are comparable to those of virions derived from human hepatoma cells, although specific infectivity of virions is modestly reduced. Thus, apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTTP), and apolipoprotein C1 (ApoC1), previously implicated in HCV assembly, are dispensable for production of infectious HCV. In the absence of ApoE, release of core protein from infected cells is reduced, and production of extracellular as well as intracellular infectivity is ablated. Since envelopment of capsids was not impaired, we conclude that ApoE acts after capsid envelopment but prior to secretion of infectious HCV. Remarkably, the lack of ApoE also abrogated direct HCV cell-to-cell transmission. These findings highlight ApoE as a host factor codetermining HCV tissue tropism due to its involvement in a late assembly step and viral cell-to-cell transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号