首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key immune players in the tumor microenvironment, we applied highly invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells and identified CXCL7 by cytokine array as one of the increasingly secreted cytokines by THP-1 cells. Further investigations indicated that upon co-culturing, breast cancer cells secreted CSF1 to induce expression and release of CXCL7 from monocytes, which in turn acted on cancer cells to promote FAK activation, MMP13 expression, migration, and invasion. In a xenograft mouse model, administration of CXCL7 antibodies significantly reduced abundance of M2 macrophages in tumor microenvironment, as well as decreased tumor growth and distant metastasis. Clinical investigation further suggested that high CXCL7 expression is correlated with breast cancer progression and poor overall survival of patients. Overall, our study unveils an important immune cytokine, CXCL7, which is secreted by tumor infiltrating monocytes, to stimulate cancer cell migration, invasion, and metastasis, contributing to the promotion of breast cancer progression.Subject terms: Breast cancer, Cancer microenvironment, Target identification, Chemokines  相似文献   

2.
Absent in melanoma 2 (AIM2) as an immune regulator for the regulation of tumor-associated macrophages (TAMs) function is unclear in tumor development. Here, the AIM2 function was investigated in TAMs-mediated malignant behaviors of renal carcinoma. The correlation analysis result showed that the AIM2 expression in TAMs was negatively correlated with the percentages of M2-like polarization phenotype in human or murine renal cancer specimens. By the cocultured assay with bone marrow-derived macrophages (BMDMs) and Renca cells, overexpression of AIM2 in macrophages enhanced the inflammasome activation and reversed the phenotype from M2 to M1. Compared with BMDMs-Ctrl cocultured group, BMDMs-AIM2 cocultured group showed reduced tumor cell proliferation and migration. The blockade of inflammasome activation by the inhibitor Ac-YVAD-CMK abrogated AIM2-mediated M1 polarization and the inhibition of tumor cell growth. To evaluate the therapeutic efficacy of AIM2-mediated M1 macrophages in vivo, BMDMs-AIM2 were intravenously injected into subcutaneous Renca-tumor mice. The results showed that the infiltration of M1 TAMs was increased and tumor growth was suppressed in BMDMs-AIM2-treated mice when compared with BMDMs-Ctrl-treat mice. Accordingly, the blockade of inflammasome activation reduced the anti-tumor activities of BMDMs-AIM2. Moreover, the lung metastases of renal carcinoma were suppressed by the administration of BMDMs-AIM2 accompanied with the reduced tumor foci. These results demonstrated that AIM2 enhanced TAMs polarization switch from anti-inflammatory M2 phenotypy to pro-inflammatory M1 through inflammasome signaling activation, thus exerting therapeutic intervention in renal carcinoma models. Our results provide a possible molecular mechanism for the modulation of TAMs polarization in tumor microenvironment and open a new potential therapeutic approach for renal cancer.  相似文献   

3.
PDGF-C, which is abundant in the malignant breast tumor microenvironment, plays an important role in cell growth and survival. Because tumor-associated macrophages (TAMs) contribute to cancer malignancy, macrophage survival mechanisms are an attractive area of research into controlling tumor progression. In this study, we investigated PDGF-C-mediated signaling pathways involved in anti-apoptotic effects in macrophages. We found that the human malignant breast cancer cell line MDA-MB-231 produced high quantities of PDGF-C, whereas benign MCF-7 cells did not. Recombinant PDGF-C induced PDGF receptor α chain phosphorylation, followed by Akt and Bad phosphorylation in THP-1-derived macrophages. MDA-MB-231 culture supernatants also activated macrophage PDGF-Rα. PDGF-C prevented staurosporine-induced macrophage apoptosis by inhibiting the activation of caspase-3, -7, -8, and -9 and cleavage of poly(ADP-ribose) polymerase. Finally, TAMs isolated from the PDGF-C knockdown murine breast cancer cell line 4T1 and PDGF-C knockdown MDA-MB-231-derived tumor mass showed higher rates of apoptosis than the respective WT controls. Collectively, our results suggest that tumor cell-derived PDGF-C enhances TAM survival, promoting tumor malignancy.  相似文献   

4.
5.
Tumor immunotherapy, such as PD-1/PD-L1 blockade, has shown promising clinical efficacy in patients with various types of tumors. However, the response to PD-1/PD-L1 blockade in a majority of malignancies is limited, indicating an urgent need for a deeper understanding of the mechanisms of PD-1/PD-L1 axis-mediated tumor tolerance. As the most abundant immune cells in the tumor stroma, macrophages display multiple phenotypes and functions in response to the stimuli of the tumor microenvironment. PD-1/PD-L1 has been demonstrated to be highly expressed in tumor-associated macrophages (TAMs), and TAM polarization has been shown to be important during tumor progression. In this review, we outline the relationship between TAM PD-1/PD-L1 expression and polarizations, summarize the involvement of M2 TAMs in PD-1/PD-L1-mediated T-cell exhaustion, and discuss improved approaches for overcoming PD-1/PD-L1 blockade resistance by inducing M2/M1 switching of TAMs.  相似文献   

6.
为探讨CXCL1基因对三阴性乳腺癌细胞MDA-MB-231的迁移、侵袭作用的影响,该研究设计针对CXCL1基因的小干扰RNA,用实时荧光定量PCR和酶联免疫吸附测定试验分别在RNA和蛋白质水平上检测干扰效率;采用流式细胞术学技术检测细胞的周期和凋亡情况;采用transwell迁移和侵袭试验分别检测细胞的迁移及侵袭能力。结果显示,与siRNA-NC组细胞相比,siCXCL1-1、siCXCL1-2、siCXCL1-3细胞中CXCL1基因的mRNA和蛋白表达均下调,且si CXCL1-3干扰效率最高,mRNA及蛋白表达水平分别降低了75%(p<0.01)和46%(p<0.01)。细胞凋亡试验和细胞周期试验结果显示,沉默CXCL1基因后对三阴性乳腺癌细胞系MDA-MB-231细胞的凋亡和周期无明显影响,差异无统计学意义(p>0.05)。transwell小室迁移和侵袭试验显示,沉默CXCL1基因能够显著抑制三阴性乳腺癌细胞MDA-MB-231的迁移和侵袭能力(p<0.01)。研究成果为临床乳腺癌中以CXCL1基因为靶点的分子治疗提供了理论依据。  相似文献   

7.
Accumulation of tumor‐associated macrophages (TAMs) associates with malignant progression in cancer. However, the mechanisms that drive the pro‐tumor functions of TAMs are not fully understood. ZEB1 is best known for driving an epithelial‐to‐mesenchymal transition (EMT) in cancer cells to promote tumor progression. However, a role for ZEB1 in macrophages and TAMs has not been studied. Here we describe that TAMs require ZEB1 for their tumor‐promoting and chemotherapy resistance functions in a mouse model of ovarian cancer. Only TAMs that expressed full levels of Zeb1 accelerated tumor growth. Mechanistically, ZEB1 expression in TAMs induced their polarization toward an F4/80low pro‐tumor phenotype, including direct activation of Ccr2. In turn, expression of ZEB1 by TAMs induced Ccl2, Cd74, and a mesenchymal/stem‐like phenotype in cancer cells. In human ovarian carcinomas, TAM infiltration and CCR2 expression correlated with ZEB1 in tumor cells, where along with CCL2 and CD74 determined poorer prognosis. Importantly, ZEB1 in TAMs was a factor of poorer survival in human ovarian carcinomas. These data establish ZEB1 as a key factor in the tumor microenvironment and for maintaining TAMs’ tumor‐promoting functions.  相似文献   

8.
9.
BackgroundBreast cancer is the most common malignancy in women and metastasis is the leading cause of breast cancer-related deaths. Our previous studies have shown that XIAOPI formula, a newly approved drug by the State Food and Drug Administration of China (SFDA), can dramatically inhibit breast cancer metastasis by modulating the tumor-associated macrophages/C-X-C motif chemokine ligand 1 (TAMs/CXCL1) pathway. However, the bioactive compound accounting for the anti-metastatic effect of XIAOPI formula remains unclear.PurposeThis study was designed to separate the anti-metastatic bioactive compound from XIAOPI formula and to elucidate its action mechanisms.Study Design/MethodsTAMs/CXCL1 promoter activity-guided fractionation and multiple chemical structure identification approaches were conducted to screen the bioactive compound from XIAOPI formula. Breast cancer cells and TAMs were co-cultured in vitro or co-injected in vivo to simulate their coexistence. Multiple molecular biology experiments, zebrafish breast cancer xenotransplantation model and mouse breast cancer xenografts were applied to validate the anti-metastatic activity of the screened compound.ResultsBioactivity-guided fractionation identified baohuoside I (BHS) as the key bioactive compound of XIAOPI formula in inhibiting TAMs/CXCL1 promoter activity. Functional studies revealed that BHS could significantly inhibit the migration and invasion as well as the expression of metastasis-related proteins in both human and mouse breast cancer cells, along with decreasing the proportion of breast cancer stem cells (CSCs). Furthermore, BHS could suppress the M2 phenotype polarization of TAMs and therefore attenuate their CXCL1 expression and secretion. Notably, mechanistic investigations validated TAMs/CXCL1 as the crucial target of BHS in suppressing breast cancer metastasis as exogenous addition of CXCL1 significantly abrogated the anti-metastatic effect of BHS on breast cancer cells. Moreover, BHS was highly safe in vivo as it exhibited no observable embryotoxicity or teratogenic effect on zebrafish embryos. More importantly, BHS remarkably suppressed breast cancer metastasis and TAMs/CXCL1 activity in both zebrafish breast cancer xenotransplantation model and mouse breast cancer xenografts.ConclusionThis study not only provides novel insights into TAMs/CXCL1 as a reliable screening target for anti-metastatic drug discovery, but also suggests BHS as a promising candidate drug for metastatic breast cancer treatment.  相似文献   

10.
Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration was evaluated by shRNA targeting of endogenous caveolin-1 in MDA-MB-231 human breast cancer cells and ectopic expression in B16-F10 mouse melanoma cells. Depletion of caveolin-1 in MDA-MB-231 cells reduced, while expression in B16-F10 cells promoted migration, polarization and focal adhesion turnover in a sequence of events that involved phosphorylation of tyrosine-14 and Rac-1 activation. In B16-F10 cells, expression of a non-phosphorylatable tyrosine-14 to phenylalanine mutant failed to recapitulate the effects observed with wild-type caveolin-1. Alternatively, treatment of MDA-MB-231 cells with the Src family kinase inhibitor PP2 reduced caveolin-1 phosphorylation on tyrosine-14 and cell migration. Surprisingly, unlike for fibroblasts, caveolin-1 polarization and re-localization to the trailing edge were not observed in migrating metastatic cells. Thus, expression and phosphorylation, but not polarization of caveolin-1 favor the highly mobile phenotype of metastatic cells.  相似文献   

11.
血小板反应蛋白4 (thrombospondin 4, THBS4) 属于THBS家族成员,是细胞外基质分泌的蛋白质,参与调控细胞增殖、黏附及血管生成等多种生理过程。近来研究表明,机体在炎症刺激下加速产生THBS4并诱导巨噬细胞粘附与积累。我们的前期研究证实,THBS4在肝癌(hepatocellular carcinoma,HCC)中发挥促癌作用,但THBS4对肝癌免疫微环境的影响尚不明确。本文旨在分析THBS4通过诱导肿瘤相关巨噬细胞M2型极化,促进肝癌细胞转移的作用。通过肝癌条件培养基(HCC conditioned medium,HCM)模拟肿瘤微环境,发现在HCM作用下巨噬细胞中THBS4表达呈时间依赖性升高(P<0.05);下调THBS4促使M1型巨噬细胞标志物IL-1β、CD86的表达升高(P<0.01),而M2型标志物 IL-10和CD206表达降低(P<0.01)。进一步通过Transwell共培养实验检测THBS4诱导的M2型巨噬细胞对肝癌转移的影响。将下调THBS4的M2型巨噬细胞(M2-TAMs)与HepG2肝癌细胞进行共培养。结果显示,下调THBS4的M2-TAMs明显抑制了HepG2细胞的侵袭和迁移能力(P均<0.01)。综上所述,肿瘤微环境促进巨噬细胞中THBS4表达,THBS4可能通过诱导巨噬细胞M2型极化促进肝癌细胞侵袭转移。本文为探究THBS4诱导肝癌免疫微环境的建立提供了一些新的实验依据。  相似文献   

12.
Based on the efficacy of EHop-016 as an inhibitor of migration and Rac1 activation, a new series of carbazole derivatives has been synthesized. Cytotoxic and anti-migratory effects of these compounds were evaluated in MCF-7 and MDA-MB-231 breast cancer cell lines. Preliminary investigations of their anticancer activity demonstrated that several compounds have moderate antiproliferative effects on cancer cell lines with GI50 values in the range of 13–50?µM. Furthermore, compounds 3b and 11b inhibit migration activity of metastatic cell line MDA-MB-231 by 32% and 34%, respectively. Compound 11b was shown to inhibit activation of the Rho GTPase Rac1 by 55% at 250?nM in both MDA-MB-231 and MDA-MB-435 cell lines. Compared with the IC50 of Rac1 inhibition by lead compound EHop-016 of 1.1?µM, compound 11b demonstrates 4X improved in vitro efficacy.  相似文献   

13.
Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca2+ chelator BAPTA or an inhibitor of endoplasmic reticulum Ca2+-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca2+ entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca2+ channel-mediated Ca2+ influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.  相似文献   

14.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are often recruited to solid tumors, integrate into the tumor stroma, and contribute to tumor development. TNFα is a major inflammatory cytokine present in the tumor microenvironment and has a profound influence on the progression of tumor development. This study was aimed to investigate the role of BM-MSCs in tumor promotion in response to TNFα. Quantitative real-time PCR arrays show that diverse cytokines/chemokines were induced in TNFα-treated BM-MSCs; in particular, CXCR3 ligand chemokines, including CXCL9, CXCL10, and CXCL11, were potently induced. A serial and site-directed mutation analysis in the CXCL9, CXCL10, and CXCL11 promoters revealed that NF-κB binding elements were responsible for TNFα-induced promoter activation of CXCR3 ligand chemokines. TNFα stimulated NF-κB activity, and ectopic expression of NF-κB enhanced TNFα-induced promoter activities of the CXCR3 ligand chemokines. Gel shift and supershift assays showed that NF-κB was associated with CXCR3 ligand chemokine promoters in response to TNFα treatment. All three CXCR3 ligand chemokines enhanced the migration and invasive motility of MDA-MB-231 breast cancer cells expressing CXCR3. Treatment of MDA-MB-231 cells with CXCL10 activated small GTPase of Rho family proteins, such as RhoA and Cdc42. CXCL9-, CXCL10-, or CXCL11-induced invasive capability of MDA-MB-231 cells was completely abrogated in the presence of a neutralizing anti-CXCR3 antibody in the culture medium. Moreover, CXCL9, CXCL10, and CXCL11 stimulated the expression of MMP-9, but not MMP-2, in MDA-MB-231 cells. These results suggest that BM-MSCs promote the locomotion of breast cancer cells through CXCR3 ligand-mediated actin rearrangement by TNFα in the tumor microenvironment.  相似文献   

15.
《Cellular signalling》2014,26(7):1604-1615
Macrophages in the tumor microenvironment play an important role in tumor cell survival. They influence the tumor cell to proliferate, invade into surrounding normal tissues and metastasize to local and distant sites. In this study, we evaluated the effect of conditioned medium from monocytes and macrophages on growth and migration of breast cancer cells. Macrophage conditioned medium (MϕCM) containing elevated levels of cytokines TNF-α, IL-1β and IL-6 had a differential effect on non-invasive (MCF7) and highly invasive (MDA-MB-231) breast cancer cell lines. MϕCM induced the secretion of TGF-β1 in MCF7 cells. This was associated with apoptosis in a fraction of cells and generation of reactive oxygen and nitrogen species (ROS and RNS) and DNA damage in the remaining cells. This, in turn, increased expression of cAMP response element binding protein (CREB) and vimentin resulting in migration of cells. These effects were inhibited by neutralization of TNF-α, IL-1β and IL-6, inhibition of ROS and RNS, DNA damage and siRNA mediated knockdown of ATM. In contrast, MDA-MB-231 cells which had higher basal levels of pCREB were not affected by MϕCM. In summary, we have found that pro-inflammatory cytokines secreted by macrophages induce TGF-β1 in tumor cells, which activate pCREB signaling, epithelial–mesenchymal-transition (EMT) responses and enhanced migration.  相似文献   

16.
Tumor-associated macrophages (TAMs) derived from peripheral blood monocytes recruited into the renal cell carcinoma (RCC) microenvironment. In response to inflammatory stimuli, macrophages undergo M1 (classical) or M2 (alternative) activation. M1 cells produce high levels of inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-12, IL-23 and IL-6, while M2 cells produce anti-inflammatory cytokines, such as IL-10, thus contributing to RCC-related immune dysfunction. The presence of extensive TAM infiltration in RCC microenvironment contributes to cancer progression and metastasis by stimulating angiogenesis, tumor growth, and cellular migration and invasion. Moreover, TAMs are involved in epithelial–mesenchymal transition of RCC cancer cells and in the development of tumor resistance to targeted agents. Interestingly, macrophage autophagy seems to play an important role in RCC. Based on this scenario, TAMs represent a promising and effective target for cancer therapy in RCC. Several strategies have been proposed to suppress TAM recruitment, to deplete their number, to switch M2 TAMs into antitumor M1 phenotype and to inhibit TAM-associated molecules. In this review, we summarize current data on the essential role of TAMs in RCC angiogenesis, invasion, impaired anti-tumor immune response and development of drug resistance, thus describing the emerging TAM-centered therapies for RCC patients.  相似文献   

17.
Tumor-associated macrophages (TAMs) are essential cellular components within tumor microenvironment (TME). TAMs are educated by TME to transform to M2 polarized population, showing a M2-like phenotype, IL-10high, IL-12low, TGF-βhigh. STAT3 signaling triggers crosstalk between tumor cells and TAMs, and is crucial for the regulation of malignant progression. In our study, legumain-targeting liposomal nanoparticles (NPs) encapsulating HC were employed to suppress STAT3 activity and “re-educate” TAMs, and to investigate the effects of suppression of tumor progression in vivo. The results showed that TAMs treated by HC encapsuled NPs could switch to M1-like phenotype, IL-10low, IL-12high, TGF-βlow, and the “re-educated” macrophages (M1-like macrophages) considerably demonstrated opposite effect of M2-like macrophages, especially the induction of 4T1 cells migration and invasion in vitro, and suppression of tumor growth, angiogenesis and metastasis in vivo. These data indicated that inhibition of STAT3 activity of TAMs by HC-NPs was able to reverse their phenotype and could regulate their crosstalk between tumor cells and TAMs in order to suppress tumor progression.  相似文献   

18.
An association between dietary fatty, obesity and an increased risk of developing breast cancer has been suggested. In breast cancer cells, free fatty acids (FFAs) mediate biological effects including cell proliferation and ERK1/2 activation. However, the contribution of FFAs to tumor progression and metastasis through the regulation of cell migration has not been studied. We demonstrated here that stimulation on MDA-MB-231 breast cancer cells with oleic acid (OA) promotes an increase in focal adhesion kinase (FAK) phosphorylation, as revealed by site-specific antibodies that recognize the phosphorylation state of FAK at tyrosine-397 (Tyr-397), Tyr-577 and in vitro kinase assays. OA also promotes the migration of MDA-MB-231 cells. Treatment with Gi/Go proteins, phospholipase C (PLC), lipoxygenases (LOXs) and Src inhibitor prevents FAK phosphorylation and cell migration. In summary, our findings delineate a new signal transduction pathway, where OA mediates the production of arachidonic acid (AA), and then AA metabolites mediate FAK phosphorylation and cell migration in MDA-MB-231 breast cancer cells.  相似文献   

19.
Macrophage polarization contributes to a number of human pathologies. This is exemplified for tumor-associated macrophages (TAMs), which display a polarized M2 phenotype, closely associated with promotion of angiogenesis and suppression of innate immune responses. We present evidence that induction of apoptosis in tumor cells and subsequent recognition of apoptotic debris by macrophages participates in the macrophage phenotype shift. During coculture of human primary macrophages with human breast cancer carcinoma cells (MCF-7) the latter ones were killed, while macrophages acquired an alternatively activated phenotype. This was characterized by decreased tumor necrosis factor (TNF)-alpha and interleukin (IL) 12-p70 production, but increased formation of IL-8 and -10. Alternative macrophage activation required tumor cell death because a coculture with apoptosis-resistant colon carcinoma cells (RKO) or Bcl-2-overexpressing MCF-7 cells failed to induce phenotype alterations. Interestingly, phenotype alterations were achieved with conditioned media from apoptotic tumor cells, arguing for a soluble factor. Knockdown of sphingosine kinase (Sphk) 2, but not Sphk1, to attenuate S1P formation in MCF-7 cells, restored classical macrophage responses during coculture. Furthermore, macrophage polarization achieved by tumor cell apoptosis or substitution of authentic S1P suppressed nuclear factor (NF)-kappaB signaling. These findings suggest that tumor cell apoptosis-derived S1P contributes to macrophage polarization.  相似文献   

20.
BackgroundTriple negative breast cancer (TNBC) is known as hot immunogenic tumor. Yet, it is one of the most aggressive BC subtypes. TNBC evolve several tactics to evade the immune surveillance phenomena, one of which is shedding of natural killer (NK) cells activating immune ligands such as MICA/B and/or by inducing the expression of the immune checkpoints such as PD-L1 and B7-H4. MALAT-1 is an oncogenic lncRNA. MALAT-1 immunogenic profile is not well investigated.AimThe study aims at exploring the immunogenic role of MALAT-1 in TNBC patients and cell lines and to identify its molecular mechanism in altering both innate and adaptive immune cells present at the tumor microenvironment of TNBCMethodsBC patients (n = 35) were recruited. Primary NK cells and cytotoxic T lymphocytes were isolated from normal individuals using the negative selection method. MDA-MB-231 cells were cultured and transfected by several oligonucleotides by lipofection technique. Screening of ncRNAs was performed using q-RT-PCR. Immunological functional analysis experiments were performed upon co-culturing primary natural killer cells and cytotoxic T lymphocytes using LDH assay. Bioinformatics analysis was performed to identify potential microRNAs targeted by MALAT-1.ResultsMALAT-1 expression was significantly upregulated in BC patinets with a profound expression in TNBC patients compared to their normal counterparts. Correlation analysis revealed a positive correlation between MALAT-1, tumor size and lymph node metastasis. Knocking down of MALAT-1 in MDA-MB-231 cells resulted in a significant induction of MICA/B, repression of PD-L1 and B7-H4 expression levels. Enhancement of cytotoxic activity of co-cultured NK and CD8+ cells with MALAT-1 siRNAs transfected MDA-MB-231 cells. In silico analysis revealed that miR-34a and miR-17–5p are potential targets to MALAT-1; accordingly, they were found to be downregulated in BC patients. Forcing the expression of miR-34a in MDA-MB-231 cells resulted in a significant induction in MICA/B levels. Ectopic expression of miR-17–5p in MDA-MB-231 cells significantly repressed the expression of PD-L1 and B7-H4 checkpoints. Validations of MALAT-1/miR-34a" and "MALAT-1/miR-17–5p axes were performed by a series of co-transfections and functional assessment of cytotoxic profile of primary immune cells.ConclusionThis study proposes a novel epigenetic alteration exerted by TNBC cells mainly by inducing the expression of MALAT-1 lncRNA. MALAT-1 mediates innate and adaptive immune suppression events partially via targeting miR-34a/MICA/B and miR-175p/PD-L1/B7-H4 axes in TNBC patients and cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号