首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding survival and cause-specific mortality of native and translocated animals can help biologists design more effective recovery programs. We estimated survival rates for 181 native mountain quail (Oreortyx pictus) in west-central Idaho from 1992 to 1996 and for 199 translocated mountain quail in western Idaho and eastern Washington in 2005 and 2006. Spring–summer survival of native birds over 4 yr ranged from 0.210 (SE = 0.116) to 0.799 (SE = 0.103) and fall–winter survival in 2 yr was 0.523 (SE = 0.089) and 0.244 (SE = 0.084). Annual survival rates were 0.418 (SE = 0.088) and 0.174 (SE = 0.065). Spring–summer survival rate of translocated birds was 0.215 (SE = 0.044) in 2005 and 0.059 (SE = 0.021) in 2006. We modeled biweekly survival as a function of sex, age, movement rate, native versus translocated status, and linear time trend, and then we added year and 3 weather covariates (mean biweekly precipitation and maximum and minimum temperatures). Year and climate variables improved the a priori top model which included movement rate and native versus translocated status. Higher mortality rates due to predation coincided with movements to breeding habitat in late winter, periods of higher temperatures in the spring and summer, and periods of higher precipitation and colder temperatures during the fall–winter seasons. High movement rates of native birds in winter to avoid snow and by translocated birds when dispersing may have led to greater exposure to predators and consequently lower survival rates. Mountain quail can experience low and variable survival, stressing the potential need for multiple years of releases in restoration efforts in the eastern portion of their range. More attention is needed to identify optimal habitat (including nest sites) for restoring mountain quail populations to reduce movements, lower mortality risks, and provide conditions for withstanding periods of unfavorable weather. © 2011 The Wildlife Society.  相似文献   

2.
Ecological theory predicts that individual survival should vary between sex and age categories due to differences in allocation of nutritional resources for growth and reproductive activities. During periods of environmental stress, such relationships may be exacerbated, and affect sex and age classes differently. We evaluated support for hypotheses about the relative roles of sex, age, and winter and summer climate on the probability of mountain goat (Oreamnos americanus) survival in coastal Alaska. Specifically, we used known-fates analyses (Program MARK) to model the effects of age, sex, and climatic variation on survival using data collected from 279 radio-marked mountain goats (118 M, 161 F) in 9 separate study areas during 1977–2008. Models including age, sex, winter snowfall, and average daily summer temperature (during Jul–Aug) best explained variation in survival probability of mountain goats. Specifically, our findings revealed that old animals (9+ yr) have lower survival than younger animals. In addition, males tended to have lower survival than females, though differences only existed among prime-aged adult (5–8 yr) and old (9+ yr) age classes. Winter climate exerted the strongest effects on mountain goat survival; summer climate, however, was significant and principally influenced survival during the following winter via indirect effects. Furthermore, old animals were more sensitive to the effects of winter conditions than young or prime-aged animals. These findings detail how climate interacts with sex and age characteristics to affect mountain goat survival. Critically, we provide baseline survival rate statistics across various age, sex, and climate scenarios. These data will assist conservation and management of mountain goats by enabling detailed, model-based demographic forecasting of human and/or climate-based population impacts. © 2011 The Wildlife Society.  相似文献   

3.
ABSTRACT Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 2004–2007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n = 84), Global Positioning System (GPS) telemetry (n = 115), or both (n = 6). Aerial survey crews detected 77% and 79% of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied Horvitz-Thompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85% but ranged 0.75–0.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.  相似文献   

4.
Understanding patterns of animal space use and range fidelity has important implications for species and habitat conservation. For species that live in highly seasonal environments, such as mountain goats (Oreamnos americanus), spatial use patterns are expected to vary in relation to seasonal changes in environmental conditions and sex‐ or age‐specific selection pressures. To address hypotheses about sex, age, and seasonality influence on space‐use ecology, we collected GPS location data from 263 radio‐collared mountain goats (males, n = 140; females, n = 123) in coastal Alaska during 2005–2016. Location data were analyzed to derive seasonal and sex‐specific fixed‐kernel home range estimates and to quantify the degree of seasonal range and utilization distribution overlap. Overall, we determined that home range size was smallest during winter, expanded coincident with the onset of green‐up and parturition, and was largest during summer. Home range size of males and females did not differ significantly during winter, but females had larger home ranges than males during summer, a relationship that was switched during the mating season. Pairwise comparisons involving individual females across subsequent years indicated home ranges were significantly smaller during years when they gave birth to offspring. Mountain goats exhibited a strong degree of range fidelity, and 99% (n = 138) of individual animals returned to their previous year''s seasonal range with an average annual Bhattacharyya''s affinity utilization distribution overlap index of 68%. Similarity of seasonal home range utilization distributions varied in relation to sex and season in some respects. Home range overlap was highest during the summer vegetation growing season, particularly among females. These findings advance our understanding about how environmental variation and sex‐ and age‐related reproductive constraints influence space use and range fidelity among alpine ungulates. Documentation of the high degree of range fidelity among mountain goats has important conservation implications in landscapes increasingly altered by anthropogenic activities.  相似文献   

5.
In temperate and northern ecosystems where there are pronounced seasonal patterns in weather and available energy, there are corresponding patterns of body condition among white-tailed deer (Odocoileus virginianus). Body condition of white-tailed deer can affect survival and reproduction, which has large repercussions for state-level natural resource agencies that allocate hunting permits. In this study, we investigated how variation in winter weather, spring phenology, habitat composition, and browse quantity affected white-tailed deer body condition across a large spatial scale. Several body condition indicators (e.g., carcass mass, heart fat, antler size) were measured by hunters for 795 deer during September–December 2016–2018 in Wisconsin, USA. Winter severity in the previous year was an unreliable predictor of fall body condition of deer when winters were considered mild or moderate. The timing of spring green-up had a consistent effect on the body condition of all age and sex classes of deer. Earlier spring green-up resulted in heavier fawns and larger antlers among adult males. Region and spring green-up interacted to affect the heart fat of adult females. Earlier springs resulted in adult females in northern and central Wisconsin having a higher probability of heavy heart fat, whereas spring green-up had no effect on adult female heart fat in southern Wisconsin. Effects of habitat differed by age and sex class of deer, and by the body condition metric being evaluated, indicating that there are important physiological differences among age and sex classes of deer that are affected by the environment. Our study demonstrates that the hunting public can contribute large-scale, cost-effective, and quality data to deer monitoring and research projects. It is important that natural resource agencies be able to identify and recruit highly engaged members of the hunting public to ensure project success. The timing of spring green-up can have lasting effects on deer health that can be consistently observed the following fall, which is in contrast to the effects of winter severity that did not appear to persist when previous winters were mild or moderate. We encourage managers in northern or temperate regions to consider measures of spring green-up timing in conjunction with traditional winter severity when making deer population management decisions, such as antlerless tag allocation.  相似文献   

6.
In temperate environments, early-born ungulates may enjoy a longer growth period before winter, and so attain a higher body mass and an increased probability of survival compared to late-born ones. We assessed the effects of maternal characteristics, forage quality and population density on kid birthdate, mass and survival in a population of marked mountain goats (Oreamnos americanus) in Alberta. The duration and timing of the birth season were similar in all years. Births were highly synchronised: 80% of kids were born within 2 weeks of the first birth. Maternal age, maternal social rank and density did not affect kid birthdate or mass. Previous breeding experience was not related to kid birthdate, but kids born to pluriparous mothers were heavier during summer than kids born to primiparous mothers. Male and female kids had similar mass and accumulated mass linearly during summer. Early-born kids were heavier than late-born kids. Faecal crude protein (FCP) in late spring and maternal mass were positively related to kid mass. Survival to weaning appeared higher for males (90%) than for females (78%), but survival to 1 year was 65% for both sexes. FCP in late spring, density, birthdate and mass did not affect kid survival to weaning in either sex. Survival to 1 year increased with FCP in late spring for females, but not for males. Survival to 1 year was independent of birthdate for both sexes, but heavy females survived better than light ones. Multiple logistic regression revealed a positive effect of mass on survival to 1 year when the sexes were pooled. Our results suggest that mountain goats are constrained to give birth in a short birth season synchronised with forage productivity.  相似文献   

7.
Potential negative artificial selection on horn size is a concern for many harvested ungulates. The mountain goat (Oreamnos americanus) has distinct black horns, but targeting animals based on horn size in the field can be challenging. We analyzed over 23,000 horn records that included base circumference and total length, from which we also derived horn volume, from mountain goats harvested in Alaska, British Columbia, and the Northwest Territories from 1980 to 2016. We tested 3 potential drivers of horn size variation: geographical location, environmental conditions, and artificial selection. We found no support for a latitudinal effect with surprisingly little variation across the sampling distribution. The Pacific Decadal Oscillation had the largest effect outside age in the model, suggesting a role of climate in shaping variation. Mountain goats harvested closer to roads had larger horns, indicating that ease of access might allow hunters to be more selective, though the effect size was small. Our findings reinforce the value of accurate and complete record keeping on horn size, age, and sex of harvested animals, and highlight the importance of explicitly considering climate and accessibility when devising management strategies for the mountain goat.  相似文献   

8.
As a vital tool for the conservation of species at risk, translocations are also opportunities to identify factors that influence translocation success. We evaluated factors associated with post-release survival of 90 radio-tracked fishers (Pekania pennanti) translocated from central British Columbia, Canada, to the Olympic Peninsula of Washington, USA, from 2008 to 2011. We hypothesized that the survival of translocated fishers would be affected by the same factors that influence the survival of resident, native fishers (i.e., sex, age, season, body condition), and additional factors that were associated with the translocation process (e.g., duration of captivity, release date, yr of release). Fisher survival was most strongly influenced by translocation year (i.e., release-yr cohort), season, sex, and age class of fisher; whereas duration of captivity, standardized body mass, release date, and number of intact canines did not influence survival. Survival was lowest for fishers released in cohort 2 in 2009 and during the breeding season (Mar–Jun), and was greatest for juveniles and males. When combined across release-year cohorts, year 1 survival rates were greatest for juvenile males followed by juvenile females, adult females, and adult males. Sex and age-related differences in survival of translocated fishers were counter to those commonly reported for established fisher populations, where adult females often have the highest survival rates and juveniles the lowest. Predation (40%) and vehicle strikes (20%) were the most common causes of known mortality among the 24 recovered fishers for which cause of death was determined. We speculate that females face higher risks of mortality in translocated populations because their small size makes them more vulnerable to predation and because adult females in resident populations are less likely than males and juveniles to disperse. Our findings support designing translocations that favor releasing a preponderance of female fishers in recognition of their lower survival rates and to ensure adequate breeders are established in the population, and juvenile and young adult fishers to enhance survival of both sexes. Releases conducted over multiple years will minimize the impact of stochastic annual events that may adversely affect survival in any given year. Persistence, widespread distribution, and documented reproduction of fishers within our study area for ≥6 years following the last releases indicate that survival parameters we measured contributed toward successful population establishment over the short term.  相似文献   

9.
The North Atlantic Oscillation (NAO) is a large‐scale pattern of climate variability that has been shown to have important ecological effects on a wide spectrum of taxa. Studies on terrestrial invertebrates are, however, lacking. We studied climate‐connected causes of changes in population sizes in island populations of the spittlebug Philaenus spumarius (L.) (Homoptera). Three populations living in meadows on small Baltic Sea islands were investigated during the years 1970–2005 in Tvärminne archipelago, southern Finland. A separate analysis was done on the effects of NAO and local climate variables on spittlebug survival in 1969–1978, for which survival data existed for two islands. We studied survival at two stages of the life cycle: growth rate from females to next year's instars (probably mostly related to overwintering egg survival), and survival from third instar stage to adult. The latter is connected to mortality caused by desiccation of plants and spittle masses. Higher winter NAO values were consistently associated with smaller population sizes on all three islands. Local climate variables entering the most parsimonious autoregressive models of population abundance were April and May mean temperature, May precipitation, an index of May humidity, and mean temperature of the coldest month of the previous winter. High winter NAO values had a clear negative effect on late instar survival in 1969–1978. Even May–June humidity and mean temperature of the coldest month were associated with late instar survival. The climate variables studied (including NAO) had no effect on the growth rate from females to next year's instars. NAO probably affected the populations primarily in late spring. Cold and snowy winters contribute to later snow melt and greater spring humidity in the meadows. We show that winter NAO has a considerable lagged effect on April and May temperature; even this second lagged effect contributes to differences in humidity. The lagged effect of the winter NAO to spring temperatures covers a large area in northern Europe and has been relatively stationary for 100 years at least in the Baltic area.  相似文献   

10.
This study examines the effectiveness of the cryotop vitrification method for the cryopreservation of goat blastocysts. To determine the effects of embryo development stage and donor age on in vitro survival rates, good-quality blastocysts from adult and prepubertal goats were sorted into non-expanded, expanded, hatching and completely hatched. In vitro produced (IVP) blastocysts were derived from prepubertal goat oocytes by slicing of ovaries from slaughtered animals while adult goat oocytes were collected by the laparoscopic ovum pick up (LOPU) method. Blastocysts were vitrified/warmed using the cryotop technique. Survival rates were determined in terms of blastocoele re-expansion at 3 and 20 h post-warming. For prepubertal goats, survival rates at 3 h post-warming were significantly higher when expanded blastocysts (78.3%) were vitrified/warmed compared to hatched blastocysts (57.4%), whereas non-expanded (62.5%) or hatching blastocysts (71.4%) showed similar rates. For adult goats, survival rates were significantly higher after warming in expanded (36.4%), hatching (75%) or hatched (50%) blastocysts when compared to non-expanded (0%) blastocysts. When survival rates were assessed at 20 h post-warming, no differences were observed when we compared non-expanded (45.8%), expanded (56.5%), hatching (64.3%) and hatched (50.5%) blastocysts from prepubertal goats; and for blastocysts from adult goats, survival rates were only significantly lower for the non-expanded stage (0%) compared to the other stages. For adult versus prepubertal blastocysts at the same developmental stage, our data indicate significantly higher survival rates at 3 h post-warming for non-expanded and expanded blastocysts from prepubertal goats over their counterparts from adult goats. At 20 h post warming, survival rates were only higher for non-expanded blastocysts from prepubertal goats versus adult goats. Collectively, our data reveal that blastocysts produced in vitro from prepubertal goats return similar survival rates regardless of their development stage, whereas blastocysts derived from adult goats are best for vitrification at the expanded, hatching or hatched stage.  相似文献   

11.
Natal dispersal outcomes are an interplay between environmental conditions and individual phenotypes. Peripheral, isolated populations may experience altered environmental conditions and natal dispersal patterns that differ from populations in contiguous landscapes. We document nonphilopatric, sex‐biased natal dispersal in an endangered small mammal, the Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis), restricted to a single mountain. Other North American red squirrel populations are shown to have sex‐unbiased, philopatric natal dispersal. We ask what environmental and intrinsic factors may be driving this atypical natal dispersal pattern. We test for the influence of proximate factors and ultimate drivers of natal dispersal: habitat fragmentation, local population density, individual behavior traits, inbreeding avoidance, competition for mates, and competition for resources, allowing us to better understand altered natal dispersal patterns at the periphery of a species’ range. A juvenile squirrel's body condition and its mother's mass in spring (a reflection of her intrinsic quality and territory quality) contribute to individual behavioral tendencies for movement and exploration. Resources, behavior, and body condition have the strongest influence on natal dispersal distance, but affect males and females differently. Male natal dispersal distance is positively influenced by its mother's spring body mass and individual tendency for movement; female natal dispersal distance is negatively influenced by its mother's spring body mass and positively influenced by individual tendency for movement. An apparent feedback between environmental variables and subsequent juvenile behavioral state contributes to an altered natal dispersal pattern in a peripheral population, highlighting the importance of studying ecological processes at the both range center and periphery of species’ distributions.  相似文献   

12.
Survival of greater sage-grouse (Centrocercus urophasianus) has been well described in large populations across the species range. Very little published information exists, however, on survival rates of translocated sage-grouse or grouse from a long-term (>10 yr) study. Our objectives were to estimate seasonal and annual survival rates; assess differences in survival between resident and translocated, adult and yearling, and male and female sage-grouse; identify environmental and behavioral factors associated with survival; and assess the influence of mammalian predator control on survival rates of radio-marked sage-grouse in Strawberry Valley, Utah from 1998 to 2010. We used a 2-stage model selection approach using Akaike's Information Criterion corrected for sample size (AICc) with known-fate models in Program MARK to evaluate the influences of seasonal, annual, demographic, and behavioral effects on survival rates of sage-grouse. We captured and fitted 535 individual sage-grouse (male and female, resident and translocated) with radio transmitters over a 13-year period and monitored them weekly. The top model of survival, which accounted for 22% of the AICc weight, included 3 seasons that varied by year where rates were influenced by residency, sex, and whether a female initiated a nest. A group-level covariate for the number of canids killed each year received some support as this variable improved model fit compared to identical models without it, although confidence intervals around β estimates overlapped zero slightly. All other demographic or environmental variables showed little or no support. Annual estimates of survival for females ranged between 28% and 84% depending on year and translocation source. Survival was consistently highest during the fall–winter months with a mean monthly survival rate of 0.97 (95% CI = 0.96–0.98). The lack of a control site and other potential confounding factors limit the extent of our inference with respect to predator control. Nonetheless, we suggest managers consider enhancing nesting habitat, translocating sage-grouse, and possibly controlling predators to improve survival rates of sage-grouse. © The Wildlife Society, 2013  相似文献   

13.
Abstract: I investigated seasonal altitudinal movements of 42 mountain goats (Oreamnos americanus) in the Cascade Range of Washington, USA. Because mountain goats typically move to lower elevations during the winter, I partitioned locations from Global Positioning System collars into summer and winter seasons based on elevation. Using an iterative narrowing search, I identified summer and winter start dates for each individual and year and derived several measures of altitudinal movements from these, and examined differences in these measures on the basis of sex and year and their interrelationship. Generally, female mountain goats started summer about 2 weeks earlier than nondispersing males; winter start dates varied among years. Horizontal distance moved between seasons was unrelated to measures of altitudinal movement. Based on elevation, winters were generally longer than summers for mountain goats I studied, suggesting that the common perception of mountain goats as inhabitants of alpine and subalpine terrain is biased, because they spent the greater part of the year at lower elevations. Mountain goats showed a wide range of responses to seasonal environmental changes and individuals cannot be easily classified as migratory or nonmigratory. Because ecological conditions in mountain environments are closely related to elevation and horizontal and altitudinal movements were unrelated, studies of seasonal movements of mountain animals based on horizontal movement may be misleading. Because seasonal altitudinal movements of mountain goats are highly variable, the management needs of each population must be considered separately.  相似文献   

14.
Translocation is a vital tool in conservation and recovery programs, and knowledge of factors that determine demographic rates of translocated organisms is important for assessing the efficacy of translocations. Greater sage-grouse (Centrocercus urophasianus) have been the subject of recent translocation efforts because of their declining range and their usefulness as an umbrella species for conservation. Using a long-term data set on sage-grouse in central Washington, USA, we compared movement and demographic rates of translocated and resident birds. Because newly translocated birds experience physiological stress during translocation and are released in unfamiliar habitat, we hypothesized their demographic rates would differ from residents. We analyzed 18 years of radio-tracking data acquired from resident, newly translocated (<1 yr post-translocation; T1), and previously translocated (>1 yr post-translocation; T2) sage-grouse between 1989 and 2017 to estimate movement rates, survival, and productivity. Newly translocated sage-grouse exhibited farther daily movements (0.58 km/day) and smaller 95% home ranges (89 km2) than residents and previously translocated birds. Daily movements and sex influenced survival, but survival did not differ according to residency status. Furthermore, birds that survived to a second year after translocation exhibited shorter daily movements compared to their first year ( = −0.727 ± 0.157 [SE]), which corresponded with increased survival the second year (T1 = 0.526, T2 = 0.610). This decrease in movements and increase in survival the second year was not apparent in the control group of resident birds, indicating a possible behavioral link to survival of newly translocated sage-grouse. Most productivity metrics were similar for translocated and resident birds, except for nest propensity (i.e., nest initiation rate), which was lower for newly translocated birds (35%) compared to residents and previously translocated birds. Our results reveal that translocated sage-grouse exhibit temporary differences in some demographic parameters in their first year, which later align with those of resident birds in subsequent years. Similarities in adult and nest survival according to residency status further suggest that translocation may prove to be a viable tool for restoring and conserving this species. Continued declines in sage-grouse populations in Washington, however, indicate that habitat conversion and fragmentation may be reducing demographic rates of residents and translocated birds, which warrants further study. © 2019 The Wildlife Society.  相似文献   

15.
The increasing popularity of recreational activities in the wild has led to concerns about their potential impacts on wildlife. All-terrain vehicles (ATVs) often bring people into wildlife habitats, where they may disturb animal populations. We assessed the influence of ATVs on the behavior of mountain goats (Oreamnos americanus) in a long-term study population at Caw Ridge, Alberta, Canada. We used multinomial models containing environment-, disturbance-, and group-related factors, to evaluate the response of mountain goats to the approach of ATVs. Goats were moderately to strongly disturbed by ATVs 44% of the time, and disturbance levels were mainly influenced by the direction and speed of the approaching vehicles. Environment- or group-related factors (e.g., time of year, distance to escape terrain, group size or type) did not affect mountain goat responses to ATVs. Because goat reactions were influenced by disturbance-level factors, we propose mitigating measures regarding the use of ATVs in the wild to minimize the disturbance to mountain goats, and potentially other alpine ungulates. © 2012 The Wildlife Society.  相似文献   

16.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

17.
We tested for cross‐species amplification of microsatellite loci located throughout the domestic sheep (Ovis aries) genome in two north American mountain ungulates (bighorn sheep, Ovis canadensis, and mountain goats, Oreamnos americanus). We identified 247 new polymorphic markers in bighorn sheep (≥ 3 alleles in one of two study populations) and 149 in mountain goats (≥ 2 alleles in a single study population) using 648 and 576 primer pairs, respectively. Our efforts increased the number of available polymorphic microsatellite markers to 327 for bighorn sheep and 180 for mountain goats. The average distance between successive polymorphic bighorn sheep and mountain goat markers inferred from the Australian domestic sheep genome linkage map (mean ± 1 SD) was 11.9 ± 9.2 and 15.8 ± 13.8 centimorgans, respectively. The development of genomic resources in these wildlife species enables future studies of the genetic architecture of trait variation.  相似文献   

18.
  • 1 The development of integrated pest management strategies requires that the semi‐natural habitats scattered across the landscape are taken into account. Particular determinants of insect pest abundance in overwintering habitats just before they migrate onto crops appear to be poorly known and of crucial importance for understanding patterns of crop colonization and pest population dynamics at the landscape scale.
  • 2 The emergence of pollen beetle Meligethes aeneus F. was studied in grassland, woodland edge and woodland interior over a 3‐year survey in France using macro‐emergence traps. A suite of variables at the local and the landscape scale was assessed for each trap, aiming to identify potential relevant habitat indicators. The effects of habitat characteristics were evaluated using partial least square regressions.
  • 3 It was found that M. aeneus can overwinter in all types of habitat but that particular habitat characteristics at the local and landscape scales may explain their abundance in overwintering sites more than the types of habitat: relative altitude, litter thickness, soil moisture and proximity to the previous year's oilseed rape fields appear to be positively correlated with abundance of adults over the 3 years.
  • 4 Hence, the abundance of emerged pollen beetles depends on both the landscape configuration of the previous year's oilseed rape fields around overwintering sites and local habitat characteristics. Landscape configuration may determine population flow towards overwintering sites in the late summer, and local habitat characteristics may influence survival rates during the winter. The findings of the present study provide valuable insight into the role of semi‐natural habitats as a source of pests, patterns of crop colonization in the spring, and the influence of landscape on pollen beetle abundance.
  相似文献   

19.
Anne Loison  Rolf Langvatn 《Oecologia》1998,116(4):489-500
Populations of red deer (Cervus elaphus) in Norway have increased continuously over the last decades. We tested the possible effects of climate and increase in population size on the survival rates and body condition of individuals in one of the northernmost populations of red deer in Europe. Based on 678 individuals of known age marked between 1977 and 1995, we estimated annual survival rates, the probabilities of being harvested and the recapture probability according to sex, age, year, winter and spring weather, population size, and, body weight and body condition, using capture-mark-recapture models. Winter harshness negatively influenced the body weight of yearlings and the survival of calves of both sexes. Spring weather influenced the survival of males in all age classes. A negative trend during the study period was detected in body weight and condition of calves and yearlings, but not in any age- or sex- specific survival rates. No significant gender differences in mean survival were shown in any age class. Moreover, there was little (male) or no (female) detectable between-year variation in survival rates for yearlings and adults. Winter weather acts as a limiting factor on population growth through a short-term effect on first-year survival and a long-term effect on body weight. We discuss the surprising low sex differences in natural survival rates and the differential effects of winter harshness on body weight, body condition and survival in relation to life history characteristics of red deer. Received: 10 November 1997 / Accepted: 2 June 1998  相似文献   

20.
Sex biases in distributions of migratory birds during the non‐breeding season are widespread; however, the proximate mechanisms contributing to broad‐scale sex‐ratio variation are not well understood. We analyzed a long‐term winter‐banding dataset in combination with spring migration data from individuals tracked by using geolocators to test three hypotheses for observed variation in sex‐ratios in wintering flocks of snow buntings Plectrophenax nivalis. We quantified relevant weather conditions in winter (temperature, snowfall and snow depth) at each banding site each year and measured body size and condition (fat scores) of individual birds (n > 5500). We also directly measured spring migration distance for 17 individuals by using light‐level geolocators. If the distribution pattern of birds in winter is related to interactions between individual body size and thermoregulation, then larger bodied birds (males) should be found in colder sites (body size hypothesis). Males may also winter closer to breeding grounds to reduce migration distance for early arrival at breeding sites (arrival timing hypothesis). Finally, males may be socially dominant over females, and thus exclude females from high‐quality wintering sites (social dominance hypothesis). We found support for the body size hypothesis, in that colder and snowier weather predicted both larger body size and higher proportions of males banded. Direct tracking revealed that males did not winter significantly closer to their breeding site, despite being slightly further north on average than females from the same breeding population. We found some evidence for social dominance, in that females tended to carry more fat than males, potentially indicating lower habitat quality for females. Global climatic warming may reduce temperature constraints on females and smaller‐bodied males, resulting in broad‐scale changes in distributional patterns. Whether this has repercussions for individual fitness, and therefore population demography, is an important area of future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号