首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
    
Although most prey have multiple predator species, few studies have quantified how prey respond to the temporal niches of multiple predators which pose different levels of danger. For example, intraspecific variation in diel activity allows white‐tailed deer (Odocoileus virginianus) to reduce fawn activity overlap with coyotes (Canis latrans) but finding safe times of day may be more difficult for fawns in a multi‐predator context. We hypothesized that within a multi‐predator system, deer would allocate antipredation behavior optimally based on combined mortality risk from multiple sources, which would vary depending on fawn presence. We measured cause‐specific mortality of 777 adult (>1‐year‐old) and juvenile (1–4‐month‐old) deer and used 300 remote cameras to estimate the activity of deer, humans, and predators including American black bears (Ursus americanus), bobcats (Lynx rufus), coyotes, and wolves (Canis lupus). Predation and vehicle collisions accounted for 5.3 times greater mortality in juveniles (16% mortality from bears, coyotes, bobcats, wolves, and vehicles) compared with adults (3% mortality from coyotes, wolves, and vehicles). Deer nursery groups (i.e., ≥1 fawn present) were more diurnal than adult deer without fawns, causing fawns to have 24–38% less overlap with carnivores and 39% greater overlap with humans. Supporting our hypothesis, deer nursery groups appeared to optimize diel activity to minimize combined mortality risk. Temporal refuge for fawns was likely the result of carnivores avoiding humans, simplifying diel risk of five species into a trade‐off between diurnal humans and nocturnal carnivores. Functional redundancy among multiple predators with shared behaviors may partially explain why white‐tailed deer fawn predation rates are often similar among single‐ and multi‐predator systems.  相似文献   

3.
4.
5.
    
Coyotes (Canis latrans) are novel predators throughout the southeastern United States and their depredation of white-tailed deer (Odocoileus virginianus) neonates may explain observed declines in some deer populations in the region, but direct evidence for such a relationship is lacking. Our objective was to quantify neonate survival rates and causes of mortality at the United States Department of Energy's Savannah River Site (SRS), South Carolina to directly evaluate degree of predation in this deer population. From 2006 to 2009, we radio-monitored 91 neonates captured with the aid of vaginal implant transmitters in pregnant adult females and opportunistic searches. Overall Kaplan–Meier survival rate to 16 weeks of age was 0.230 (95% CI = 0.155–0.328), and it varied little among years. Our best-fitting model estimated survival at 0.220 (95% CI = 0.144–0.320). This model included a quadratic time trend variable (lowest survival rate during the first week of life and increasing to near 1.000 around week 10), and Julian date of birth (survival probability declining as date of birth increased). Predation by coyotes was the most frequent cause of death among the 70 monitored neonates that died, definitively accounting for 37% of all mortalities and potentially accounting for as much as 80% when also including probable coyote predation. Predation by bobcats (Felis rufus) accounted for 7% (definitive) to 9% (including probable bobcat predation) of mortalities. The level of coyote-induced mortality we observed is consistent with the low recruitment rates exhibited in the SRS deer population since establishment of coyotes at the site. If representative of recruitment rates across South Carolina, current harvest levels appear unsustainable. This understanding is consistent with the recent declining trend in the statewide deer population. The effects of coyote predation on recruitment should be considered when setting harvest goals, regardless of whether local deer population size is currently above or below desired levels, because coyotes can substantially reduce fawn recruitment. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
7.
    
White-tailed deer (Odocoileus virginianus) are a cervid species found mostly in the Americas. Managing white-tailed deer requires understanding their relationship with the environment, which was characterized by Roseberry and Woolf (Wildlife Society Bulletin 1, 1998, 252) for all counties in Illinois, USA, who incorporated habitat quantity and quality in a deer habitat suitability index. However, this index was based on satellite imagery from 1996 and did not explore the smaller spatial scales used by deer. Our study addressed these gaps by developing a deer land cover utility (LCU) score for each TRS (township, range, and section), township, and county in Illinois based on the methodology outlined in Roseberry and Woolf (Wildlife Society Bulletin 1, 1998, 252) but using data from the National Land Cover Database (2001–2021). These deer LCU scores were validated against minimum deer population data using Bayesian regression with additional covariates relevant to hunting and deer density. These models performed well with Bayesian R2 values of 0.501 (TRS), 0.5 (township), and 0.969 (county). The regression coefficients for the deer LCU scores were statistically significant (95% credibility interval not containing 0) and positive at the TRS, township, and county levels, reflecting the expected relationship between minimum deer density and deer LCU. Predictions made by these regression models on new data were accurate, with the median absolute difference between the true and predicted values being 0.398 deer/km2 for TRS', 0.085 deer/km2 for townships, and 0.066 deer/km2 for counties. This deer LCU could be used in other studies about deer in Illinois or studies in which deer are a relevant factor such as investigations about deer disease or tick distribution. This modeling approach could also be adapted to different wild species, locations, and/or time periods for which land cover data is available.  相似文献   

8.
    
ABSTRACT Downing population reconstruction uses harvest-by-age data and backward addition of cohorts to estimate minimum population size over time. Although this technique is currently being used for management of black bear (Ursus americanus) and white-tailed deer (Odocoileus virginianus) populations, it had not undergone a rigorous evaluation of accuracy. We used computer simulations to evaluate the impacts of collapsing age classes and violating the assumptions of this technique on population reconstruction estimates and trends. Changes in harvest rate or survival over time affected accuracy of reconstructed population estimates and trends. The technique was quite robust to collapsing age classes as far as 3+ for bears and deer. This method would be suitable for estimating population growth rate (λ) for populations experiencing no trend in harvest rate or natural mortality rate over time. Our evaluation showed Downing population reconstruction to be a potentially valuable tool for managing harvested species with high harvest rates and low natural mortality, with possible application to black bear and white-tailed deer populations.  相似文献   

9.
ABSTRACT The coyote (Canis latrans) is a recent addition to the fauna of eastern North America, and in many areas coyote populations have been established for only a decade or two. Although coyotes are known predators of white-tailed deer (Odocoileus virginianus) in their historic range, effects this new predator may have on eastern deer populations have received little attention. We speculated that in the southeastern United States, coyotes may be affecting deer recruitment, and we present 5 lines of evidence that suggest this possibility. First, the statewide deer population in South Carolina has declined coincident with the establishment and increase in the coyote population. Second, data sets from the Savannah River Site (SRS) in South Carolina indicate a new mortality source affecting the deer population concurrent with the increase in coyotes. Third, an index of deer recruitment at SRS declined during the period of increase in coyotes. Fourth, food habits data from SRS indicate that fawns are an important food item for coyotes during summer. Finally, recent research from Alabama documented significant coyote predation on fawns there. Although this evidence does not establish cause and effect between coyotes and observed declines in deer recruitment, we argue that additional research should proactively address this topic in the region. We identified several important questions on the nature of the deer—coyote relationship in the East.  相似文献   

10.
11.
    
Understanding the influence of intrinsic (e.g., age, birth mass, and sex) and habitat factors on survival of neonate white-tailed deer improves understanding of population ecology. During 2002–2004, we captured and radiocollared 78 neonates in eastern South Dakota and southwestern Minnesota, of which 16 died before 1 September. Predation accounted for 80% of mortality; the remaining 20% was attributed to starvation. Canids (coyotes [Canis latrans], domestic dogs) accounted for 100% of predation on neonates. We used known fate analysis in Program MARK to estimate survival rates and investigate the influence of intrinsic and habitat variables on survival. We developed 2 a priori model sets, including intrinsic variables (model set 1) and habitat variables (model set 2; forested cover, wetlands, grasslands, and croplands). For model set 1, model {Sage-interval} had the lowest AICc (Akaike's information criterion for small sample size) value, indicating that age at mortality (3-stage age-interval: 0–2 weeks, 2–8 weeks, and >8 weeks) best explained survival. Model set 2 indicated that habitat variables did not further influence survival in the study area; β-estimates and 95% confidence intervals for habitat variables in competing models encompassed zero; thus, we excluded these models from consideration. Overall survival rate using model {Sage-interval} was 0.87 (95% CI = 0.83–0.91); 61% of mortalities occurred at 0–2 weeks of age, 26% at 2–8 weeks of age, and 13% at >8 weeks of age. Our results indicate that variables influencing survival may be area specific. Region-specific data are needed to determine influences of intrinsic and habitat variables on neonate survival before wildlife managers can determine which habitat management activities influence neonate populations. © 2011 The Wildlife Society  相似文献   

12.
    
Abstract: As humans continue to move further from the urban epicenter and expand into suburban and exurban areas, problems involving coexistence of wildlife and human populations will become increasingly common. Wildlife biologists will be tasked with reducing wildlife-human conflicts, and their effectiveness will be a function of their understanding of the biology and life-history characteristics of wildlife populations residing in areas with high human density. In this study, we examined causes and timing of deaths of neonatal white-tailed deer (Odocoileus virginianus) in an exurban area of Alabama in 2004 and 2005, estimated survival rates, and determined factors that influenced survival for the initial 8 weeks of life. We found 67% mortality, with the leading causes being predation by coyotes (Canis latrans; 41.7%)and starvation due to abandonment (25%). These results suggest that coyote predation may be a significant source of natural mortality in exurban areas. Contrary to our original expectations, vehicle collisions were not an important cause of mortality.  相似文献   

13.
    
Landscape genetic analyses allow detection of fine‐scale spatial genetic structure (SGS) and quantification of effects of landscape features on gene flow and connectivity. Typically, analyses require generation of resistance surfaces. These surfaces characteristically take the form of a grid with cells that are coded to represent the degree to which landscape or environmental features promote or inhibit animal movement. How accurately resistance surfaces predict association between the landscape and movement is determined in large part by (a) the landscape features used, (b) the resistance values assigned to features, and (c) how accurately resistance surfaces represent landscape permeability. Our objective was to evaluate the performance of resistance surfaces generated using two publicly available land cover datasets that varied in how accurately they represent the actual landscape. We genotyped 365 individuals from a large black bear population (Ursus americanus) in the Northern Lower Peninsula (NLP) of Michigan, USA at 12 microsatellite loci, and evaluated the relationship between gene flow and landscape features using two different land cover datasets. We investigated the relative importance of land cover classification and accuracy on landscape resistance model performance. We detected local spatial genetic structure in Michigan''s NLP black bears and found roads and land cover were significantly correlated with genetic distance. We observed similarities in model performance when different land cover datasets were used despite 21% dissimilarity in classification between the two land cover datasets. However, we did find the performance of land cover models to predict genetic distance was dependent on the way the land cover was defined. Models in which land cover was finely defined (i.e., eight land cover classes) outperformed models where land cover was defined more coarsely (i.e., habitat/non‐habitat or forest/non‐forest). Our results show that landscape genetic researchers should carefully consider how land cover classification changes inference in landscape genetic studies.  相似文献   

14.
    
Environmental factors, such as forest characteristics, have been linked to fawn survival in eastern and southern white-tailed deer (Odocoileus virginianus) populations. In the Great Plains, less is known about how intrinsic and habitat factors influence fawn survival. During 2007–2009, we captured and radiocollared 81 fawns in north-central South Dakota and recorded 23 mortalities, of which 18 died before 1 September. Predation accounted for 52.2% of mortality; remaining mortality included human (hunting, vehicle, and farm accident; 26.1%) and hypothermia (21.7%). Coyotes (Canis latrans) accounted for 83.3% of predation on fawns. We used known-fate analysis in Program MARK to estimate summer (15 May–31 Aug) survival rates and investigated the influence of intrinsic and habitat variables on survival. We developed 2 a priori model sets, including intrinsic variables and a test of annual variation in survival (model set 1) and habitat variables (model set 2). Model set 1 indicated that summer survival varied among years (2007–2009); annual survival rates were 0.94 (SE = 0.06, n = 22), 0.78 (SE = 0.09, n = 27), and 0.54 (SE = 0.10, n = 32), respectively. Model set 2 indicated that survival was further influenced by patch density of cover habitats (Conservation Reserve Program [CRP]-grasslands, forested cover, and wetlands). Mean CRP-grassland and wetland patch density (no. patches/100 ha) were greater (P < 0.001) in home-range areas of surviving fawns ( = 1.81, SE = 0.10, n = 63; = 1.75, SE = 0.14, n = 63, respectively) than in home-range areas of fawns that died ( = 0.16, SE = 0.04, n = 18; = 1.28, SE = 0.10, n = 18, respectively). Mean forested cover patch density was less (P < 0.001) in home-range areas of surviving fawns ( = 0.77, SE = 0.10, n = 63) than in home-range areas of fawns that died ( = 1.49, SE = 0.21, n = 18). Our results indicate that management activities should focus on CRP-grassland and wetland habitats in order to maintain or improve fawn survival in the northern Great Plains, rather than forested cover composed primarily of tree plantings and shelterbelts. © 2012 The Wildlife Society.  相似文献   

15.
    
Pronghorn (Antilocapra americana) occur throughout western North America. In Idaho, USA, following intensive hunting to reduce crop depredations in the late 1980s, pronghorn populations have not rebounded to desired levels. Because neonatal survival in ungulates is one factor limiting population growth, we evaluated cause-specific mortality and the influence of intrinsic and extrinsic factors on survival rates of 217 radio-collared pronghorn fawns across 3 study areas in Idaho during 2015–2016. For intrinsic variables, we determined the sex and body mass index (BMI) for each fawn. For extrinsic variables, we determined the abundance of predators and alternate prey, estimated the normalized difference vegetation index (NDVI) for 1 month pre- and post-parturition, and measured fecal nitrogen and diaminopimelic acid (DAPA). We considered NDVI as a measure of plant productivity, and fecal nitrogen and DAPA as possible proxies of diet quality. We predicted NDVI, fecal nitrogen, and DAPA would be positively related to the nutritional status of females and positively related to fawn survival. We used Program MARK with known fate models to estimate semi-monthly survival rates of pronghorn fawns for the first 4 months post-parturition. During both years, the leading cause of fawn mortality was coyote (Canis latrans) predation (58%), followed by unknown causes of mortality (18%), unknown predation (12%), predation by bobcats (Lynx rufus; 6%), predation by golden eagles (Aquila chrysaetos; 3%), and other (3%). Mean fawn survival for the 4 months post-parturition across years and study sites was 0.42 ± 0.04 (SE; range = 28–62%). The top survival model included BMI, lagomorph abundance, and DAPA and had a model weight of 83.3%. All 3 variables were positively related to pronghorn fawn survival. Because females with increased nutrition generally have heavier fawns, BMI was likely correlated to diet quality, which was supported by the positive relationship between DAPA and fawn survival. We hypothesize that high lagomorph abundance created an alternate prey base to buffer coyotes from preying on pronghorn neonates. We found no influence of measures of NDVI (pre- and post-parturition), fecal nitrogen, or predator abundance on fawn survival. Management actions providing high-quality forage for pronghorn are likely to contribute to production of heavier fawns having the highest chance of survival. © 2020 The Wildlife Society.  相似文献   

16.
1. Mech et al . (1987) documented cumulative, negative effects of previous winters' snow on rates of population increase in moose ( Alces alces ) and white-tailed deer ( Odocoileus virginianus ), but noted no effect of predation by wolves ( Canis lupus ). Those results were contested by Messier (1991), who analysed smoothed versions of the original abundance data and reported no effect of snow accumulation on population dynamics of either species, but strong effects of wolf predation and food competition.
2. McRoberts, Mech & Peterson (1995) contended that the conclusions reached by Messier (1991) were an artefact of the use of smoothed data. In a subsequent re-analysis of the smoothed data, Messier (1995) argued that the lack of an effect of snow after one year precluded the potential for a cumulative effect beyond one year.
3. We re-analysed original and smoothed data on dynamics of moose and white-tailed deer densities using the same methods as Mech et al . (1987) and Messier (1991), but we used a measure of global climatic fluctuation, the North Atlantic Oscillation (NAO) index. The NAO is the atmospheric process determining most interannual variation in snowfall and winter temperatures in northern latitudes, and its phases drive decadal trends in wintertime precipitation.
4. We observed that rates of increase of moose and white-tailed deer in both the original and smoothed data were influenced by global climatic fluctuation at 2- and 3-year lags, as well as by delayed density-dependent feedback and wolf predation.  相似文献   

17.
    
American black bears (Ursus americanus) were extirpated from Oklahoma, USA, in the early twentieth century but have since recolonized eastern portions of the state after immigrating from Arkansas, where they were successfully translocated. Within the last 2 decades, a population of black bears was detected in the Oklahoma Ozark region, prompting studies to determine population size, growth rate, and genetic makeup. To understand how black bears were recolonizing the human-dominated landscape, we investigated resource selection at 2 scales. Between 2011 and 2016, we collected global positioning system collar spatial data for 10 males and 13 females. We calculated average kernel density home ranges on a seasonal scale for all collared bears. We used generalized linear mixed models to calculate resource selection functions at the study area, defined by locations of all radio-collared black bears (second order) and the scale of individual black bear home ranges (third order). Resource selection did not differ significantly by sex. Black bears across seasons and scales selected riparian forest and moist oak (Quercus spp.) forest land cover types and mostly selected against indicators of human activity (e.g., pasture-prairie, anthropogenic land cover types, roads, and areas of high human population density). Black bears also selected areas with rugged terrain at high elevations, although not consistently across seasons and scales. Black bear recolonization appeared to be negatively affected by areas and features characterized as human-altered. Further expansion of the range of black bears may be limited by anthropogenic disturbance in the region. © 2021 The Wildlife Society.  相似文献   

18.
    
Some jurisdictions in the eastern United States have reduced harvest of white-tailed deer (Odocoileus virginianus) because of perceived declines in recruitment and population size over the last decade. Although the restoration of American black bears (Ursus americanus) and the colonization of coyotes (Canis latrans) have increased fawn predation in some areas, limited information exists on how temporally dynamic resources and weather influence fawn survival. Therefore, we evaluated fawn survival probability, cause specific mortality, and if factors such as oak (Quercus spp.) mast abundance, winter severity, precipitation, and landscape composition influenced mortality risk on Marine Corps Base Quantico in northern Virginia, USA, from 2008 to 2019. We tracked 248 fawns outfitted with very high frequency radio-collars and predation was the leading cause of mortality (n = 42; 45%). We estimated survival to 133 days and survival pooling all years (2008–2019) was 0.50 (95% CI = 0.42–0.60). Increased annual red oak (Quercus spp.) mast abundance from the previous fall reduced mortality hazard for fawns. The longevity of our study revealed a link between fawn survival and a specific maternal resource (red oak mast) only available during gestation. Our results highlight the importance of oak mast in eastern deciduous forests and, more broadly, overwinter maternal condition on white-tailed deer recruitment.  相似文献   

19.
    
Abstract Widespread mule deer (Odocoilus hemionous) declines coupled with white-tailed deer (O. virginianus) increases prompted us to investigate the role of cougar (Puma concolor) predation in a white-tailed deer, mule deer, and cougar community in northeast Washington, USA. We hypothesized that cougars select for and disproportionately prey on mule deer in such multiple-prey communities. We estimated relative annual and seasonal prey abundance (prey availability) and documented 60 cougar kills (prey usage) from 2002 to 2004. White-tailed deer and mule deer comprised 72% and 28% of the total large prey population and 60% and 40% of the total large prey killed, respectively. Cougars selected for mule deer on an annual basis (αmd = 0.63 vs. αwt = 0.37; P = 0.066). We also detected strong seasonal selection for mule deer with cougars killing more mule deer in summer (αmd = 0.64) but not in winter (αmd = 0.53). Cougars showed no seasonal selection for white-tailed deer despite their higher relative abundance. The mean annual kill interval of 6.68 days between kills varied little by season (winter = 7.0 days/kill, summer = 6.6 days/kill; P = 0.78) or prey species (white-tailed deer = 7.0 days/kill, mule deer = 6.1 days/kill; P = 0.58). Kill locations for both prey species occurred at higher elevations during summer months (summer = 1,090 m, winter = 908 m; P = 0.066). We suspect that cougars are primarily subsisting on abundant white-tailed deer during winter but following these deer to higher elevations as they migrate to their summer ranges, resulting in a greater spatial overlap between cougars and mule deer and disproportionate predation on mule deer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号