首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Designed retroaldolases have utilized a nucleophilic lysine to promote carbon–carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (> 10− 3 s− 1) and kcat/KM (11–25 M− 1 s− 1) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the > 105-fold rate accelerations that were achieved are within 1–3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat = 106 to 108) and an extensively evolved computational design (kcat/kuncat > 107). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches.  相似文献   

2.
The development of effective protease therapeutics requires that the proteases be more resistant to naturally occurring inhibitors while maintaining catalytic activity. A key step in developing inhibitor resistance is the identification of key residues in protease-inhibitor interaction. Given that majority of the protease therapeutics currently in use are trypsin-fold, trypsin itself serves as an ideal model for studying protease-inhibitor interaction. To test the importance of several trypsin-inhibitor interactions on the prime-side binding interface, we created four trypsin single variants Y39A, Y39F, K60A, and K60V and report biochemical sensitivity against bovine pancreatic trypsin inhibitor (BPTI) and M84R ecotin. All variants retained catalytic activity against small, commercially available peptide substrates [kcat/KM = (1.2 ± 0.3) × 107 M−1 s−1. Compared with wild-type, the K60A and K60V variants showed increased sensitivity to BPTI but less sensitivity to ecotin. The Y39A variant was less sensitive to BPTI and ecotin while the Y39F variant was more sensitive to both. The relative binding free energies between BPTI complexes with WT, Y39F, and Y39A were calculated based on 3.5 µs combined explicit solvent molecular dynamics simulations. The BPTI:Y39F complex resulted in the lowest binding energy, while BPTI:Y39A resulted in the highest. Simulations of Y39F revealed increased conformational rearrangement of F39, which allowed formation of a new hydrogen bond between BPTI R17 and H40 of the variant. All together, these data suggest that positions 39 and 60 are key for inhibitor binding to trypsin, and likely more trypsin-fold proteases.  相似文献   

3.
This work addresses the binding, cleavage and dissociation rates for the substrate and products of a synthetic RNaseA mimic that was combinatorially selected using chemically modified nucleoside triphosphates. This trans-cleaving DNAzyme, 925-11t, catalyzes sequence-specific ribophosphodiester hydrolysis in the total absence of a divalent metal cation, and in low ionic strength at pH 7.5 and in the presence of EDTA. It is the first such sequence capable of multiple turnover. 925-11t consists of 31 bases, 18 of which form a catalytic domain containing 4 imidazole and 6 allylamino modified nucleotides. This sequence cleaves the 15 nt long substrate, S1, at one embedded ribocytosine at the eighth position to give a 5′-product terminating in a 2′,3′-phosphodiester and a 3′-product terminating in a 5′-OH. Under single turnover conditions at 24°C, 925-11t displays a maximum first-order rate constant, kcat, of 0.037 min−1 and a catalytic efficiency, kcat/Km, of 5.3 × 105 M−1 min−1. The measured value of kcat under catalyst excess conditions agrees with the value of kcat observed for steady-state multiple turnover, implying that slow product release is not rate limiting with respect to multiple turnover. The substrate specificity of 925-11t was gauged in terms of kcat values for substrate sequence variants. Base substitutions on the scissile ribose and at the two bases immediately downstream decrease kcat values by a factor of 4 to 250, indicating that 925-11t displays significant sequence specificity despite the lack of an apparent Watson–Crick base-pairing scheme for recognition.  相似文献   

4.
We previously showed (Li, L., and Carter, C. W., Jr. (2013) J. Biol. Chem. 288, 34736–34745) that increased specificity for tryptophan versus tyrosine by contemporary Bacillus stearothermophilus tryptophanyl-tRNA synthetase (TrpRS) over that of TrpRS Urzyme results entirely from coupling between the anticodon-binding domain and an insertion into the Rossmann-fold known as Connecting Peptide 1. We show that this effect is closely related to a long range catalytic effect, in which side chain repacking in a region called the D1 Switch, accounts fully for the entire catalytic contribution of the catalytic Mg2+ ion. We report intrinsic and higher order interaction effects on the specificity ratio, (kcat/Km)Trp/(kcat/Km)Tyr, of 15 combinatorial mutants from a previous study (Weinreb, V., Li, L., and Carter, C. W., Jr. (2012) Structure 20, 128–138) of the catalytic role of the D1 Switch. Unexpectedly, the same four-way interaction both activates catalytic assist by Mg2+ ion and contributes −4.4 kcal/mol to the free energy of the specificity ratio. A minimum action path computed for the induced-fit and catalytic conformation changes shows that repacking of the four residues precedes a decrease in the volume of the tryptophan-binding pocket. We suggest that previous efforts to alter amino acid specificities of TrpRS and glutaminyl-tRNA synthetase (GlnRS) by mutagenesis without extensive, modular substitution failed because mutations were incompatible with interdomain motions required for catalysis.  相似文献   

5.
Endo-β-1, 4-xylanase was cloned from Geobacillus stearothermophilus 1A05583 by PCR. Enzymes with improved catalytic efficiency were obtained using error-prone PCR and a 96-well plate high-throughout screening system. Two variants 1-B8 and 2-H6 were screened from the mutant library containing 9000 colonies, which, when compared with the wild-type enzyme increased the catalytic efficiency (kcat/Km) by 25% and 89%, respectively, acting on beechwood xylan. By sequencing 1-B8 and 2-H6, an identical mutation point H179Y was detected and found to overlap in the active site cleft. Following the introduction of the remaining 19 amino acids into position 179 by site-saturation mutagenesis, the catalytic efficiency of H179F was found to be 3.46-fold that of the wild-type. When Whistidine was substituted by tryptophan, arginine, methionine or proline, the enzyme lost activity. Therefore, the position 179 site may play an important role in regulating the catalytic efficiency.  相似文献   

6.
Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants.  相似文献   

7.
Xylanases produce xylooligosaccharides from xylan and have thus attracted increasing attention for their usefulness in industrial applications. Previously, we demonstrated that the GH11 xylanase XynLC9 from Bacillus subtilis formed xylobiose and xylotriose as the major products with negligible production of xylose when digesting corncob-extracted xylan. Here, we aimed to improve the catalytic performance of XynLC9 via protein engineering. Based on the sequence and structural comparisons of XynLC9 with the xylanases Xyn2 from Trichoderma reesei and Xyn11A from Thermobifida fusca, we identified the N-terminal residues 5-YWQN-8 in XynLC9 as engineering hotspots and subjected this sequence to site saturation and iterative mutagenesis. The mutants W6F/Q7H and N8Y possessed a 2.6- and 1.8-fold higher catalytic activity than XynLC9, respectively, and both mutants were also more thermostable. Kinetic measurements suggested that W6F/Q7H and N8Y had lower substrate affinity, but a higher turnover rate (kcat), which resulted in increased catalytic efficiency than WT XynLC9. Furthermore, the W6F/Q7H mutant displayed a 160% increase in the yield of xylooligosaccharides from corncob-extracted xylan. Molecular dynamics simulations revealed that the W6F/Q7H and N8Y mutations led to an enlarged volume and surface area of the active site cleft, which provided more space for substrate entry and product release and thus accelerated the catalytic activity of the enzyme. The molecular evolution approach adopted in this study provides the design of a library of sequences that captures functional diversity in a limited number of protein variants.  相似文献   

8.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   

9.
In order to understand the molecular basis of cold adaptation, we have used directed evolution to transform a thermophilic lipase LipR1 into its psychrophilic counterpart. A single round of random mutagenesis followed by screening for improved variants yielded a mutant with single-point mutation LipR1M1 (S130T), with optimum activity at 20?°C. Its activity at 50?°C is only 20% as compared to wild type (100%). It showed catalytic rate constant (k cat) 3 times higher and a catalytic efficiency (k cat/K m) 4 times that of wild type. Circular dichroism and fluorescence studies also supported our observation of mutant structural flexibility. Structure analysis using homology models showed that Threonine 130 is exposed to solvent and has lost H-bond interaction with neighboring amino acid, thereby increasing flexibility of this lipase structure.  相似文献   

10.
Amphioxus (Branchiostoma floridae) cholinesterase 2 (ChE2) hydrolyzes acetylthiocholine (AsCh) almost exclusively. We constructed a homology model of ChE2 on the basis of Torpedo californica acetylcholinesterase (AChE) and found that the acyl pocket of the enzyme resembles that of Drosophila melanogaster AChE, which is proposed to be comprised of Phe330 (Phe290 in T. californica AChE) and Phe440 (Val400), rather than Leu328 (Phe288) and Phe330 (Phe290), as in vertebrate AChE. In ChE2, the homologous amino acids are Phe312 (Phe290) and Phe422 (Val400). To determine if these amino acids define the acyl pocket of ChE2 and its substrate specificity, and to obtain information about the hydrophobic subsite, partially comprised of Tyr352 (Phe330) and Phe353 (Phe331), we performed site-directed mutagenesis and in vitro expression. The aliphatic substitution mutant F312I ChE2 hydrolyzes AsCh preferentially but also butyrylthiocholine (BsCh), and the change in substrate specificity is due primarily to an increase in kcat for BsCh; Km and Kss are also altered. F422L and F422V produce enzymes that hydrolyze BsCh and AsCh equally due to an increase in kcat for BsCh and a decrease in kcat for AsCh. Our data suggest that Phe312 and Phe422 define the acyl pocket. We also screened mutants for changes in sensitivity to various inhibitors. Y352A increases the sensitivity of ChE2 to the bulky inhibitor ethopropazine. Y352A decreases inhibition by BW284c51, consistent with its role as part of the choline-binding site. Aliphatic replacement mutations produce enzymes that are more sensitive to inhibition by iso-OMPA, presumably by increasing access to the active site serine. Y352A, F353A and F353V make ChE2 considerably more resistant to inhibition by eserine and neostigmine, suggesting that binding of these aromatic inhibitors is mediated by π–π or cation–π interactions at the hydrophobic site. Our results also provide information about the aromatic trapping of the active site histidine and the inactivation of ChE2 by sulfhydryl reagents.  相似文献   

11.
Tan CL  Yeo CC  Khoo HE  Poh CL 《Journal of bacteriology》2005,187(21):7543-7545
xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (kcat/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme.  相似文献   

12.
We here report a study on the activation of the ι-class bacterial CA from Burkholderia territorii (BteCAι). This protein was recently characterised as a zinc-dependent enzyme that shows a significant catalytic activity (kcat 3.0 × 105 s−1) for the physiological reaction of CO2 hydration to bicarbonate and protons. Some amino acids and amines, among which some proteinogenic derivatives as well as histamine, dopamine and serotonin, showed efficient activating properties towards BteCAι, with activation constants in the range 3.9–13.3 µM. L-Phe, L-Asn, L-Glu, and some pyridyl-alkylamines, showed a weaker activating effect towards BteCAι, with KA values ranging between 18.4 µM and 45.6 µM. Nowadays, no information is available on active site architecture, metal ion coordination and catalytic mechanism of members of the ι-group of CAs, and this study represents another contribution towards a better understanding of this still uncharacterised class of enzymes.  相似文献   

13.
Hong SH  Lim YR  Kim YS  Oh DK 《Biochimie》2012,94(9):1926-1934
A recombinant thermostable l-fucose isomerase from Dictyoglomus turgidum was purified with a specific activity of 93 U/mg by heat treatment and His-trap affinity chromatography. The native enzyme existed as a 410 kDa hexamer. The maximum activity for l-fucose isomerization was observed at pH 7.0 and 80 °C with a half-life of 5 h in the presence of 1 mM Mn2+ that was present one molecular per monomer. The isomerization activity of the enzyme with aldose substrates was highest for l-fucose (with a kcat of 15,500 min−1 and a Km of 72 mM), followed by d-arabinose, d-altrose, and l-galactose. The 15 putative active-site residues within 5 Å of the substrate l-fucose in the homology model were individually replaced with other amino acids. The analysis of metal-binding capacities of these alanine-substituted variants revealed that Glu349, Asp373, and His539 were metal-binding residues, and His539 was the most influential residue for metal binding. The activities of all variants at 349 and 373 positions except for a dramatically decreased kcat of D373A were completely abolished, suggesting that Glu349 and Asp373 were catalytic residues. Alanine substitutions at Val131, Met197, Ile199, Gln314, Ser405, Tyr451, and Asn538 resulted in substantial increases in Km, suggesting that these amino acids are substrate-binding residues. Alanine substitutions at Arg30, Trp102, Asn404, Phe452, and Trp510 resulted in decreases in kcat, but had little effect on Km.  相似文献   

14.
Intramolecular mobility and conformational changes of flexible loops have important roles in the structural and functional integrity of proteins. The Achaetomium sp. Xz8 endo-polygalacturonase (PG8fn) of glycoside hydrolase (GH) family 28 is distinguished for its high catalytic activity (28,000 U/mg). Structure modeling indicated that PG8fn has a flexible T3 loop that folds partly above the substrate in the active site, and forms a hydrogen bond to the substrate by a highly conserved residue Asn94 in the active site cleft. Our research investigates the catalytic roles of Asn94 in T3 loop which is located above the catalytic residues on one side of the substrate. Molecular dynamics simulation performed on the mutant N94A revealed the loss of the hydrogen bond formed by the hydroxyl group at O34 of pentagalacturonic acid and the crucial ND2 of Asn94 and the consequent detachment and rotation of the substrate away from the active site, and that on N94Q caused the substrate to drift away from its place due to the longer side chain. In line with the simulations, site-directed mutagenesis at this site showed that this position is very sensitive to amino acid substitutions. Except for the altered K m values from 0.32 (wild type PG8fn) to 0.75–4.74 mg/ml, all mutants displayed remarkably lowered k cat (~3–20,000 fold) and k cat/K m (~8–187,500 fold) values and significantly increased △(△G) values (5.92–33.47 kJ/mol). Taken together, Asn94 in the GH28 T3 loop has a critical role in positioning the substrate in a correct way close to the catalytic residues.  相似文献   

15.
In the present study, glutaryl-7-amino cephalosporanic acid acylase from Pseudomonas sp. strain 130 (CA130) was mutated to improve its enzymatic activity and stability. Based on the crystal structure of CA130, two series of amino acid residues, one from those directly involved in catalytic function and another from those putatively involved in surface charge, were selected as targets for site-directed mutagenesis. In the first series of experiments, several key residues in the substrate-binding pocket were substituted, and the genes were expressed in Escherichia coli for activity screening. Two of the mutants constructed, Y151αF and Q50βN, showed two- to threefold-increased catalytic efficiency (kcat/Km) compared to wild-type CA130. Their Km values were decreased by ca. 50%, and the kcat values increased to 14.4 and 16.9 s−1, respectively. The ability of these mutants to hydrolyze adipoyl 6-amino penicillinic acid was also improved. In the second series of mutagenesis, several mutants with enhanced stabilities were identified. Among them, R121βA and K198βA had a 30 to 58% longer half-life than wild-type CA130, and K198βA and D286βA showed an alkaline shift of optimal pH by about 1.0 to 2.0 pH units. To construct an engineered enzyme with the properties of both increased activity and stability, the double mutant Q50βN/K198βA was expressed. This enzyme was purified and immobilized for catalytic analysis. The immobilized mutant enzyme showed a 34.2% increase in specific activity compared to the immobilized wild-type CA130.  相似文献   

16.
Understanding enzyme catalysis through the analysis of natural enzymes is a daunting challenge—their active sites are complex and combine numerous interactions and catalytic forces that are finely coordinated. Study of more rudimentary (wo)man-made enzymes provides a unique opportunity for better understanding of enzymatic catalysis. KE07, a computationally designed Kemp eliminase that employs a glutamate side chain as the catalytic base for the critical proton abstraction step and an apolar binding site to guide substrate binding, was optimized by seven rounds of random mutagenesis and selection, resulting in a > 200-fold increase in catalytic efficiency. Here, we describe the directed evolution process in detail and the biophysical and crystallographic studies of the designed KE07 and its evolved variants. The optimization of KE07's activity to give a kcat/KM value of ∼ 2600 s− 1 M− 1 and an ∼ 106-fold rate acceleration (kcat/kuncat) involved the incorporation of up to eight mutations. These mutations led to a marked decrease in the overall thermodynamic stability of the evolved KE07s and in the configurational stability of their active sites. We identified two primary contributions of the mutations to KE07's improved activity: (i) the introduction of new salt bridges to correct a mistake in the original design that placed a lysine for leaving-group protonation without consideration of its “quenching” interactions with the catalytic glutamate, and (ii) the tuning of the environment, the pKa of the catalytic base, and its interactions with the substrate through the evolution of a network of hydrogen bonds consisting of several charged residues surrounding the active site.  相似文献   

17.
Cytochrome P450 27C1 (P450 27C1) is a retinoid desaturase expressed in the skin that catalyzes the formation of 3,4-dehydroretinoids from all-trans retinoids. Within the skin, retinoids are important regulators of proliferation and differentiation. In vivo, retinoids are bound to cellular retinol-binding proteins (CRBPs) and cellular retinoic acid–binding proteins (CRABPs). Interaction with these binding proteins is a defining characteristic of physiologically relevant enzymes in retinoid metabolism. Previous studies that characterized the catalytic activity of human P450 27C1 utilized a reconstituted in vitro system with free retinoids. However, it was unknown whether P450 27C1 could directly interact with holo-retinoid-binding proteins to receive all-trans retinoid substrates. To assess this, steady-state kinetic assays were conducted with free all-trans retinoids and holo-CRBP-1, holo-CRABP-1, and holo-CRABP-2. For holo-CRBP-1 and holo-CRABP-2, the kcat/Km values either decreased 5-fold or were equal to the respective free retinoid values. The kcat/Km value for holo-CRABP-1, however, decreased ∼65-fold in comparison with reactions with free all-trans retinoic acid. These results suggest that P450 27C1 directly accepts all-trans retinol and retinaldehyde from CRBP-1 and all-trans retinoic acid from CRABP-2, but not from CRABP-1. A difference in substrate channeling between CRABP-1 and CRABP-2 was also supported by isotope dilution experiments. Analysis of retinoid transfer from holo-CRABPs to P450 27C1 suggests that the decrease in kcat observed in steady-state kinetic assays is due to retinoid transfer becoming rate-limiting in the P450 27C1 catalytic cycle. Overall, these results illustrate that, like the CYP26 enzymes involved in retinoic acid metabolism, P450 27C1 interacts with cellular retinoid-binding proteins.  相似文献   

18.
New Delhi metallo-β-lactmase-1 (NDM-1) has attracted extensive attention for its high catalytic activities of hydrolyzing almost all β-lactam antibiotics. NDM-1 shows relatively higher similarity to subclass B1 metallo-β-lactmases (MβLs), but its residue at position 229 is identical to that of B2/B3 MβLs, which is a Tyr instead of a B1-MβL-conserved Trp. To elucidate the possible role of Y229 in the bioactivity of NDM-1, we performed mutagenesis study and molecular dynamics (MD) simulations. Although residue Y229 is spatially distant from the active site and not contacting directly with the substrate or zinc ions, the Y229W mutant was found to have higher kcat and Km values than those of wild-type NDM-1, resulting in 1∼7 fold increases in kcat/Km values against tested antibiotics. In addition, our MD simulations illustrated the enhanced flexibility of Loop 2 upon Y229W mutation, which could increase the kinetics of both substrate entrance (kon) and product egress (koff). The enhanced flexibility of Loop 2 might allow the enzyme to adjust the geometry of its active site to accommodate substrates with different structures, broadening its substrate spectrum. This study indicated the possible role of the residue at position 229 in the evolution of NDM-1.  相似文献   

19.
The role of calcium ion in the active site of the inverting glycoside hydrolase family 97 enzyme, BtGH97a, was investigated through structural and kinetic studies. The calcium ion was likely directly involved in the catalytic reaction. The pH dependence of kcat/Km values in the presence or absence of calcium ion indicated that the calcium ion lowered the pKa of the base catalyst. The significant decreases in kcat/Km for hydrolysis of substrates with basic leaving groups in the absence of calcium ion confirmed that the calcium ion facilitated the leaving group departure.  相似文献   

20.
A novel short-chain (S)-1-phenyl-1,2-ethanediol dehydrogenase (SCR) from Candida parapsilosis exhibits coenzyme specificity for NADPH over NADH. It catalyzes an anti-Prelog type reaction to reduce 2-hydroxyacetophenone into (S)-1-phenyl-1,2-ethanediol. The coding gene was overexpressed in Escherichia coli and the purified protein was crystallized. The crystal structure of the apo-form was solved to 2.7 Å resolution. This protein forms a homo-tetramer with a broken 2-2-2 symmetry. The overall fold of each SCR subunit is similar to that of the known structures of other homologous alcohol dehydrogenases, although the latter usually form tetramers with perfect 2-2-2 symmetries. Additionally, in the apo-SCR structure, the entrance of the NADPH pocket is blocked by a surface loop. In order to understand the structure–function relationship of SCR, we carried out a number of mutagenesis–enzymatic analyses based on the new structural information. First, mutations of the putative catalytic Ser-Tyr-Lys triad confirmed their functional role. Second, truncation of an N-terminal 31-residue peptide indicated its role in oligomerization, but not in catalytic activity. Similarly, a V270D point mutation rendered the SCR as a dimer, rather than a tetramer, without affecting the enzymatic activity. Moreover, the S67D/H68D double-point mutation inside the coenzyme-binding pocket resulted in a nearly 10-fold increase and a 20-fold decrease in the kcat/KM value when NADH and NADPH were used as cofactors, respectively, with kcat remaining essentially the same. This latter result provides a new example of a protein engineering approach to modify the coenzyme specificity in SCR and short-chain dehydrogenases/reductases in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号