首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cilia play a major role in the regulation of numerous signaling pathways and are essential for embryonic development. Mutations in genes affecting ciliary function can cause a variety of diseases in humans summarized as ciliopathies. To facilitate the detection and visualization of cilia in a temporal and spatial manner in mouse tissues, we generated a Cre‐inducible cilium‐specific reporter mouse line expressing an ARL13B‐tRFP fusion protein driven by a CMV enhancer/chicken β actin promotor (pCAG) from the Hprt locus. We detected bright and specific ciliary signals by immunostainings of various mono‐ and multiciliated tissues and by time‐lapse live‐cell analysis of cultured embryos and organ explant cultures. Additionally, we monitored cilium assembly and disassembly in embryonic fibroblast cells using live‐cell imaging. Thus, the ARL13B‐tRFP reporter mouse strain is a valuable tool for the investigation of ciliary structure and function in a tissue‐specific manner to understand processes, such as ciliary protein trafficking or cilium‐dependent signaling in vitro and in vivo.  相似文献   

2.
Patients with the ciliopathy Joubert syndrome present with physical anomalies, intellectual disability, and a hindbrain malformation described as the “molar tooth sign” due to its appearance on an MRI. This radiological abnormality results from a combination of hypoplasia of the cerebellar vermis and inappropriate targeting of the white matter tracts of the superior cerebellar peduncles. ARL13B is a cilia-enriched regulatory GTPase established to regulate cell fate, cell proliferation, and axon guidance through vertebrate Hedgehog signaling. In patients, mutations in ARL13B cause Joubert syndrome. To understand the etiology of the molar tooth sign, we used mouse models to investigate the role of ARL13B during cerebellar development. We found that ARL13B regulates superior cerebellar peduncle targeting and these fiber tracts require Hedgehog signaling for proper guidance. However, in mouse, the Joubert-causing R79Q mutation in ARL13B does not disrupt Hedgehog signaling nor does it impact tract targeting. We found a small cerebellar vermis in mice lacking ARL13B function but no cerebellar vermis hypoplasia in mice expressing the Joubert-causing R79Q mutation. In addition, mice expressing a cilia-excluded variant of ARL13B that transduces Hedgehog normally showed normal tract targeting and vermis width. Taken together, our data indicate that ARL13B is critical for the control of cerebellar vermis width as well as superior cerebellar peduncle axon guidance, likely via Hedgehog signaling. Thus, our work highlights the complexity of ARL13B in molar tooth sign etiology.  相似文献   

3.
4.
Joubert syndrome (JS) and related disorders are a group of autosomal-recessive conditions sharing the "molar tooth sign" on axial brain MRI, together with cerebellar vermis hypoplasia, ataxia, and psychomotor delay. JS is suggested to be a disorder of cilia function and is part of a spectrum of disorders involving retinal, renal, digital, oral, hepatic, and cerebral organs. We identified mutations in ARL13B in two families with the classical form of JS. ARL13B belongs to the Ras GTPase family, and in other species is required for ciliogenesis, body axis formation, and renal function. The encoded Arl13b protein was expressed in developing murine cerebellum and localized to the cilia in primary neurons. Overexpression of human wild-type but not patient mutant ARL13B rescued the Arl13b scorpion zebrafish mutant. Thus, ARL13B has an evolutionarily conserved role mediating cilia function in multiple organs.  相似文献   

5.
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.  相似文献   

6.
《Organogenesis》2013,9(1):96-107
The ciliopathies are a group of related inherited diseases characterized by malformations in organ development. The diseases affect multiple organ systems, with kidney, skeleton, and brain malformations frequently observed. Research over the last decade has revealed that these diseases are due to defects in primary cilia, essential sensory organelles found on most cells in the human body. Here we discuss the genetic and cell biological basis of one of the most severe ciliopathies, Meckel-Gruber syndrome, and explain how primary cilia contribute to the development of the affected organ systems.  相似文献   

7.
8.
目的评价芽胞杆菌B13的功能。方法通过培养基及土壤培养分析其解钾、解磷的效果。结果芽胞杆菌B13培养7d后液体培养基中的有效磷含量(0.94μg/mL)比对照组(0.75μg/mL)增加25.33%,有效钾含量(0.54μg/mL)比对照组(0.31μg/mL)增加74.19%,解磷和解钾差异均有统计学意义(P〈0.01)。芽胞杆菌B13添加在灭菌土壤和不灭菌土壤中都具有明显的解磷、解钾功效,说明芽胞杆菌B13有较好的土壤定植能力。平板解磷试验证明芽胞杆菌B13同时具有解无机磷和有机磷的功效。结论芽胞杆菌B13具有很大的研究与开发价值。  相似文献   

9.
10.
11.
ADAMTS13 is gaining attention, because its deficiency causes thrombotic thrombocytopenic purpura. Although its regulatory mechanism is not fully understood, we wondered if hepatic stellate cells (HSCs) play a role, because ADAMTS13 mRNA is exclusively expressed in the liver and primarily in HSCs. Plasma ADAMTS13 activity was markedly reduced in dimethylnitrosamine-treated rats, where HSC apoptosis is an essential event, but not in carbon tetrachloride- or thioacetamide-treated rats without HSC apoptosis. Furthermore, plasma ADAMTS13 activity was also reduced in 70% hepatectomized rats, where HSC loss occurs. These results suggest that HSC may be involved in the regulation of plasma ADAMTS13 activity.  相似文献   

12.
Primordial germ cell (PGC) development in Xenopus embryos relies on localised maternal determinants. We report on the identification and functional characterisation of such one novel activity, a germ plasm associated mRNA encoding for the Xenopus version of a kinesin termed KIF13B. Modulations of xKIF13B function result in germ cell mismigration and in reduced numbers of such cells. PGCs explanted from Xenopus embryos form bleb-like protrusions enriched in PIP3. Knockdown of xKIF13B results in inhibition of blebbing and PIP3 accumulation. Interference with PIP3 synthesis leads to PGC mismigration in vivo and in vitro. We propose that xKIF13B function is linked to polarized accumulation of PIP3 and directional migration of the PGCs in Xenopus embryos.  相似文献   

13.
B13, one of the immunodominant antigens of Trypanosoma cruzi, is composed of repeats of a 12-amino-acid motif. Using synthetic peptides, the sequence FGQAAAGDK was previously shown to contain the B13 immunodominant epitope recognized by chagasic patients sera. To investigate the effects of neighboring sequences in the immunodominance, we tested serum recognition of two B13 sequences fused to LamB. GDKPSPFGQAAA-LamB and FGQAAAGDKPSP-LamB were recognized, respectively, by 15% and 80% of 80 sera reactive to B13 antigen. Recognition of FGQAAAGDKPSP-LamB was inhibited by AAAGDK-containing synthetic peptides. FGQAAAGDKPSP-LamB competed with a B13 recombinant protein containing 16.6 repeats for binding to chagasic antibodies. These results strengthen previous conclusions on the immunodominant epitope of B13 and provide a comparison of two methods for epitope mapping.  相似文献   

14.
15.
Regulated transport of proteins to distinct plasma membrane domains is essential for the establishment and maintenance of cell polarity in all eukaryotic cells. The Rab family small G proteins play a crucial role in determining the specificity of vesicular transport pathways. Rab3B and Rab13 localize to tight junction in polarized epithelial cells and cytoplasmic vesicular structures in non-polarized fibroblasts, but their functions are poorly understood. Here we examined their roles in regulating the cell-surface transport of apical p75 neurotrophin receptor (p75NTR), basolateral low-density lipoprotein receptor (LDLR), and tight junctional Claudin-1 using transport assay in non-polarized fibroblasts. Overexpression of Rab3B mutants inhibited the cell-surface transport of LDLR, but not p75NTR and Claudin-1. In contrast, overexpression of Rab13 mutants impaired the transport of Claudin-1, but not LDLR and p75NTR. These results suggest that Rab3B and Rab13 direct the cell-surface transport of LDLR and Claudin-1, respectively, and may contribute to epithelial polarization.  相似文献   

16.
17.
Summary— The eucaryote cell cycle is driven by a set of cyclin dependent kinases (CDKs) associated to cyclins, which confer not only the activity but also the substrate specificity and the proper localization of the kinase activity. In the fission yeast Schizosaccharomyces pombe, only one cyclin, the product of the cdc13 gene (p56cdc13), is required to be associated with p34cdc2, to control the complete cell cycle. Earlier studies have localized this complex mainly in the nucleus and its periphery. Using new improved electron microscopy (EM) technologies, based on high pressure freezing fixation, we refined previous studies, evidencing cytoplasmic localization of p56cdc13, in addition to the nuclear localization previously observed. Further immunofluorescence studies, performed on aldehydically fixed cells, confirmed our EM results, emphasizing the major cytoplasmic localization of p56cdc13 in interphase cells and the relocalization towards the nucleus in mitotic cells, suggesting that the S pombe cyclin B localization is cell cycle-regulated.  相似文献   

18.
Down syndrome (DS) is the most common chromosomal abnormality and is associated with an extra copy of the chromosome 21. Although several markers are commonly used during pregnancy for the screening of DS, the definitive diagnosis is based on karyotype after amniocentesis, which is an expensive and laborious analysis. S100B is an astrocyte protein which had its gene mapped to the long arm of chromosome 21. Previous preliminary reports have found increased levels of this protein in the amniotic fluid of DS gestations. Aiming to achieve a simpler and cheaper test then karyotype to perform prenatal diagnosis of DS, here we have extended our previous studies and evaluated the real usefulness of amniotic S100B measurement for prenatal DS diagnosis. We have measured S100B in amniotic fluid of 96 pregnancies with DS and of 50 normal pregnancies. Pregnancies with DS presented significantly higher amniotic fluid S100B levels (M = 1.16 ng/mL; IQ = 0.83/1.78) than normal pregnancies (M = 0.51 ng/mL; IQ = 0.38/0.83) (p < 0.0001). A receiver operating characteristic (ROC) curve was performed to evaluate the sensitivity and specificity of S100B for DS diagnosis, and presented an area under the curve (AUC) of 0.82, indicating that S100B could be a reliable marker of DS. Moreover, values above 1.67 ng/mL were present only in DS fetuses, representing about 30% of affected pregnancies. However, as an overlap of values was observed between normal and DS gestations, we concluded that amniotic S100B alone is not a good test to discard DS diagnosis.  相似文献   

19.
Genomic instability has been accepted as providing a phenotypic variety of malignant cells within a developing tumour. Defects in genetic recombination can often lead to phenotypic differences; therefore, it is possible that metastatic variant cell lines exhibit their particular phenotype as a result of an altered ability to catalyse homologous recombination. We have investigated recombination efficiency in B16 melanoma metastatic variants, using a plasmid, pDR, as a recombination substrate. The plasmid contains two truncated, nontandem but overlapping segments of the neomycin resistance gene (neo 1 and neo 2), separated by the functional gpt gene unit. Only a successful recombination of the two neo segments will generate a functionally intact neomycin gene. Extrachromosomal recombination here was a transient measure of the cells to recombine the neo fragments in an intra- or intermolecular manner. Extrachromosomal recombination frequencies were higher in the high metastasis variants (BL6, ML8) compared with the low metastatic F1 cells. On the other hand, the frequency of chromosomal recombination (after plasmid integration) was higher for the low metastasis (F1) cell line compared with the highly metastatic variants, BL6 and ML8. Since the recombination assay measures only successful recombination events, we have interpreted the observed higher incidence of chromosomal recombination in the low metastatic variant line as indicative of a more stable genome. Similarly, a higher inherent instability in the genome of the high metastasis variants would render these less efficient at producing and maintaining successful recombination events, and this was found to be true by Southern analysis. The results presented show that frequency of recombination may be adduced as evidence for implicating genomic instability in the generation of variant cell populations during metastatic spread. Such an interpretation is also compatible with the Nowell hypothesis for tumour progression. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The NPHS2 gene, encoding the slit diaphragm protein podocin, accounts for genetic and sporadic forms of nephrotic syndrome (NS). Patients with NS often present symptoms of volume retention, such as oedema formation or hypertension. The primary dysregulation in sodium handling involves an inappropriate activation of the epithelial sodium channel, ENaC. Plasma proteases in a proteinuria‐dependent fashion have been made responsible; however, referring to the timeline of symptoms occurring and underlying mechanisms, contradictory results have been published. Characterizing the mouse model of podocyte inactivation of NPHS2 (Nphs2?pod) with respect to volume handling and proteinuria revealed that sodium retention, hypertension and gross proteinuria appeared sequentially in a chronological order. Detailed analysis of Nphs2?pod during early sodium retention, revealed increased expression of full‐length ENaC subunits and αENaC cleavage product with concomitant increase in ENaC activity as tested by amiloride application, and augmented collecting duct Na+/K+‐ATPase expression. Urinary proteolytic activity was increased and several proteases were identified by mass spectrometry including cathepsin B, which was found to process αENaC. Renal expression levels of precursor and active cathepsin B were increased and could be localized to glomeruli and intercalated cells. Inhibition of cathepsin B prevented hypertension. With the appearance of gross proteinuria, plasmin occurs in the urine and additional cleavage of γENaC is encountered. In conclusion, characterizing the volume handling of Nphs2?pod revealed early sodium retention occurring independent to aberrantly filtered plasma proteases. As an underlying mechanism cathepsin B induced αENaC processing leading to augmented channel activity and hypertension was identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号