首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron transfer reactions among three prominent colored proteins in intact cells of Acidithiobacillus ferrooxidans were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scattered light. The concentrations of proteins in the periplasmic space were estimated to be 350 and 25 mg/ml for rusticyanin and cytochrome c, respectively; cytochrome a was present as one molecule for every 91 nm2 in the cytoplasmic membrane. All three proteins were rapidly reduced to the same relative extent when suspensions of live bacteria were mixed with different concentrations of ferrous ions at pH 1.5. The subsequent molecular oxygen-dependent oxidation of the multicenter respiratory chain occurred with a single macroscopic rate constant, regardless of the proteins'' in vitro redox potentials or their putative positions in the aerobic iron respiratory chain. The crowded electron transport proteins in the periplasm of the organism constituted an electron conductive medium where the network of protein interactions functioned in a concerted fashion as a single ensemble with a standard reduction potential of 650 mV. The appearance of product ferric ions was correlated with the reduction levels of the periplasmic electron transfer proteins; the limiting first-order catalytic rate constant for aerobic respiration on iron was 7,400 s−1. The ability to conduct direct spectrophotometric studies under noninvasive physiological conditions represents a new and powerful approach to examine the extent and rates of biological events in situ without disrupting the complexity of the live cellular environment.  相似文献   

2.
3.
The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c. The organization of metalloproteins inside the supramolecular structure was specified by protein-protein interaction experiments. The isolated complex spanning the two membranes had iron oxidase as well as oxygen reductase activities, indicating functional electron transfer between the first iron electron acceptor, Cyc2, and the Cu(A) center of cytochrome c oxidase aa(3). This is the first characterization of a respirasome from an acidophilic bacterium. In Acidithiobacillus ferrooxidans,O(2) reduction from ferrous iron must be coupled to the energy-consuming reduction of NAD(+)(P) from ferrous iron (uphill pathway) required for CO(2) fixation and other anabolic processes. Besides the proteins involved in the O(2) reduction, there were additional proteins in the supercomplex, involved in uphill pathway (bc complex and cytochrome Cyc(42)), suggesting a possible physical link between these two pathways.  相似文献   

4.
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.  相似文献   

5.
Extracellular respiration of solid-phase electron acceptors in some microorganisms requires a complex chain of multiheme c-type cytochromes that span the inner and outer membranes. In Shewanella species, MtrA, an ∼35-kDa periplasmic decaheme c-type cytochrome, is an essential component for extracellular respiration of iron(III). The exact mechanism of electron transport has not yet been resolved, but the arrangement of the polypeptide chain may have a strong influence on the capability of the MtrA cytochrome to transport electrons. The iron hemes of MtrA are bound to its polypeptide chain via proximal (CXXCH) and distal histidine residues. In this study, we show the effects of mutating histidine residues of MtrA to arginine on protein expression and extracellular respiration using Shewanella sp. strain ANA-3 as a model organism. Individual mutations to six out of nine proximal histidines in CXXCH of MtrA led to decreased protein expression. However, distal histidine mutations resulted in various degrees of protein expression. In addition, the effects of histidine mutations on extracellular respiration were tested using ferrihydrite and current production in microbial fuel cells. These results show that proximal histidine mutants were unable to reduce ferrihydrite. Mutations to the distal histidine residues resulted in various degrees of ferrihydrite reduction. These findings indicate that mutations to the proximal histidine residues affect MtrA expression, leading to loss of extracellular respiration ability. In contrast, mutations to the distal histidine residues are less detrimental to protein expression, and extracellular respiration can proceed.  相似文献   

6.
The intra‐erythrocyte stage of P. falciparum relies primarily on glycolysis to generate adenosine triphosphate (ATP) and the energy required to support growth and reproduction. Lactic acid, a metabolic byproduct of glycolysis, is potentially toxic as it lowers the pH inside the parasite. Plasmodium falciparum formate–nitrite transporter (PfFNT), a 34‐kDa transmembrane protein, has been identified as a novel drug target as it exports lactate from inside the parasite to the surrounding parasitophorous vacuole within the erythrocyte cytosol. The structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present structures of PfFNT in the absence and presence of the functional inhibitor MMV007839 at resolutions of 2.56 Å and 2.78 Å using single‐particle cryo‐electron microscopy. Genetic analysis and transport assay indicate that PfFNT is able to transfer lactate across the membrane. Combined, our data suggest a stepwise displacement mechanism for substrate transport. The PfFNT membrane protein is capable of picking up lactate ions from the parasite’s cytosol, converting them to lactic acids and then exporting these acids into the extracellular space.  相似文献   

7.
Phylogenetically diverse species of bacteria can catalyze the oxidation of ferrous iron [Fe(II)] coupled to nitrate (NO3) reduction, often referred to as nitrate-dependent iron oxidation (NDFO). Very little is known about the biochemistry of NDFO, and though growth benefits have been observed, mineral encrustations and nitrite accumulation likely limit growth. Acidovorax ebreus, like other species in the Acidovorax genus, is proficient at catalyzing NDFO. Our results suggest that the induction of specific Fe(II) oxidoreductase proteins is not required for NDFO. No upregulated periplasmic or outer membrane redox-active proteins, like those involved in Fe(II) oxidation by acidophilic iron oxidizers or anaerobic photoferrotrophs, were observed in proteomic experiments. We demonstrate that while “abiotic” extracellular reactions between Fe(II) and biogenic NO2/NO can be involved in NDFO, intracellular reactions between Fe(II) and periplasmic components are essential to initiate extensive NDFO. We present evidence that an organic cosubstrate inhibits NDFO, likely by keeping periplasmic enzymes in their reduced state, stimulating metal efflux pumping, or both, and that growth during NDFO relies on the capacity of a nitrate-reducing bacterium to overcome the toxicity of Fe(II) and reactive nitrogen species. On the basis of our data and evidence in the literature, we postulate that all respiratory nitrate-reducing bacteria are innately capable of catalyzing NDFO. Our findings have implications for a mechanistic understanding of NDFO, the biogeochemical controls on anaerobic Fe(II) oxidation, and the production of NO2, NO, and N2O in the environment.  相似文献   

8.
Metabolic reprogramming of non‐cancer cells residing in a tumor microenvironment, as a result of the adaptations to cancer‐derived metabolic and non‐metabolic factors, is an emerging aspect of cancer–host interaction. We show that in normal and cancer‐associated fibroblasts, breast cancer‐secreted extracellular vesicles suppress mTOR signaling upon amino acid stimulation to globally reduce mRNA translation. This is through delivery of cancer‐derived miR‐105 and miR‐204, which target RAGC, a component of Rag GTPases that regulate mTORC1 signaling. Following amino acid starvation and subsequent re‐feeding, 13C‐arginine labeling of de novo synthesized proteins shows selective translation of proteins that cluster to specific cellular functional pathways. The repertoire of these newly synthesized proteins is altered in fibroblasts treated with cancer‐derived extracellular vesicles, in addition to the overall suppressed protein synthesis. In human breast tumors, RAGC protein levels are inversely correlated with miR‐105 in the stroma. Our results suggest that through educating fibroblasts to reduce and re‐prioritize mRNA translation, cancer cells rewire the metabolic fluxes of amino acid pool and dynamically regulate stroma‐produced proteins during periodic nutrient fluctuations.  相似文献   

9.
An extracellular electron carrier excreted into the growth medium by cells of Geobacter sulfurreducens was identified as a c-type cytochrome. The cytochrome was found to be distributed in about equal amounts in the membrane fraction, the periplasmic space, and the surrounding medium during all phases of growth with acetate plus fumarate. It was isolated from periplasmic preparations and purified to homogeneity by cation-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. The electrophoretically homogeneous cytochrome had a molecular mass of 9.57 ± 0.02 kDa and exhibited in its reduced state absorption maxima at wavelengths of 552, 522, and 419 nm. The midpoint redox potential determined by redox titration was −0.167 V. With respect to molecular mass, redox properties, and molecular features, this cytochrome exhibited its highest similarity to the cytochromes c of Desulfovibrio salexigens and Desulfuromonas acetoxidans. The G. sulfurreducens cytochrome c reduced ferrihydrite (Fe(OH)3), Fe(III) nitrilotriacetic acid, Fe(III) citrate, and manganese dioxide at high rates. Elemental sulfur, anthraquinone disulfonate, and humic acids were reduced more slowly. G. sulfurreducens reduced the cytochrome with acetate as an electron donor and oxidized it with fumarate. Wolinella succinogenes was able to reduce externally provided cytochrome c of G. sulfurreducens with molecular hydrogen or formate as an electron donor and oxidized it with fumarate or nitrate as an electron acceptor. A coculture could be established in which G. sulfurreducens reduced the cytochrome with acetate, and the reduced cytochrome was reoxidized by W. succinogenes in the presence of nitrate. We conclude that this cytochrome can act as iron(III) reductase for electron transfer to insoluble iron hydroxides or to sulfur, manganese dioxide, or other oxidized compounds, and it can transfer electrons to partner bacteria.  相似文献   

10.
The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H+ + 2e → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.  相似文献   

11.
An extension of the respiratory chain to the cell surface is necessary to reduce extracellular electron acceptors like ferric iron or manganese oxides. In the past few years, more and more compounds were revealed to be reduced at the surface of the outer membrane of Gram-negative bacteria, and the list does not seem to have an end so far. Shewanella as well as Geobacter strains are model organisms to discover the biochemistry that enables the dissimilatory reduction of extracellular electron acceptors. In both cases, c-type cytochromes are essential electron-transferring proteins. They make the journey of respiratory electrons from the cytoplasmic membrane through periplasm and over the outer membrane possible. Outer membrane cytochromes have the ability to catalyze the last step of the respiratory chains. Still, recent discoveries provided evidence that they are accompanied by further factors that allow or at least facilitate extracellular reduction. This review gives a condensed overview of our current knowledge of extracellular respiration, highlights recent discoveries, and discusses critically the influence of different strategies for terminal electron transfer reactions.  相似文献   

12.
The iron(III) reductase activity of Geobacter sulfurreducens was determined with the electron donor NADH and the artificial electron donor horse heart cytochrome c. The highest reduction rates were obtained with Fe(III) complexed by nitrilotriacetic acid as an electron acceptor. Fractionation experiments indicated that no iron(III) reductase activity was present in the cytoplasm, that approximately one-third was found in the periplasmic fraction, and that two-thirds were associated with the membrane fraction. Sucrose gradient separation of the outer and cytoplasmic membranes showed that about 80% of the iron(III) reductase was present in the outer membrane. The iron(III) reductase could be solubilized from the membrane fraction with 0.5 M KCl showing that the iron(III) reductase was weakly bound to the membranes. In addition, solubilization of the iron(III) reductase from whole cells with 0.5 M KCl, without disruption of cells, indicated that the iron(III) reductase is a peripheral protein on the outside of the outer membrane. Redox difference spectra of KCl extracts showed the presence of c-type cytochromes which could be oxidized by ferrihydrite. Only one activity band was observed in native polyacrylamide gels stained for the iron(III) reductase activity. Excision of the active band from a preparative gel followed by extraction of the proteins and sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of high-molecular-mass, cytochrome-containing proteins in this iron(III) reductase activity band. From these experimental data it can be hypothesized that the iron(III) reductase of G. sulfurreducens is a peripheral outer membrane protein that might contain a c-type cytochrome.  相似文献   

13.
《BBA》2020,1861(11):148271
The bacterium Geobacter metallireducens is highly efficient in long-range extracellular electron transfer, a process that relies on an efficient bridging between the cytoplasmic electron donors and the extracellular acceptors. The periplasmic triheme cytochromes are crucial players in these processes and thus the understanding of their functional mechanism is crucial to elucidate the extracellular electron transfer processes in this microorganism. The triheme cytochrome PpcF from G. metallireducens has the lowest amino acid sequence identity with the remaining cytochromes from the PpcA-family of G. sulfurreducens and G. metallireducens, making it an interesting target for structural and functional studies. In this work, we performed a detailed functional and thermodynamic characterization of cytochrome PpcF by the complementary usage of NMR and visible spectroscopic techniques. The results obtained show that the heme reduction potentials are negative, different from each other and are also modulated by the redox and redox-Bohr interactions that assure unprecedented mechanistic features to the protein. The results showed that the order of oxidation of the hemes in cytochrome PpcF is maintained in the entire physiological pH range. The considerable separation of the hemes' redox potential values facilitates a sequential transfer within the chain of redox centers in PpcF, thus assuring electron transfer directionality to the electron acceptors.  相似文献   

14.
The outer membrane of a Gram‐negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β‐barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self‐assembly in vitro. Hence, it is unclear whether substrate–chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA–OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8‐stranded β‐barrel OMP substrates with(out) BamA. We also examined whether BamA is species‐specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate‐independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.  相似文献   

15.
Fluorescent pseudomonads such as Pseudomonas aeruginosa or Pseudomonas fluorescens produce pyoverdine siderophores that ensure iron-supply in iron-limited environments. After its synthesis in the cytoplasm, the nonfluorescent pyoverdine precursor ferribactin is exported into the periplasm, where the enzymes PvdQ, PvdP, PvdO, PvdN, and PtaA are responsible for fluorophore maturation and tailoring steps. While the roles of all these enzymes are clear, little is known about the role of PvdM, a human renal dipeptidase–related protein that is predicted to be periplasmic and that is essential for pyoverdine biogenesis. Here, we reveal the subcellular localization and functional role of PvdM. Using the model organism P. fluorescens, we show that PvdM is anchored to the periplasmic side of the cytoplasmic membrane, where it is indispensable for the activity of the tyrosinase PvdP. While PvdM does not share the metallopeptidase function of renal dipeptidase, it still has the corresponding peptide-binding site. The substrate of PvdP, deacylated ferribactin, is secreted by a ΔpvdM mutant strain, indicating that PvdM prevents loss of this periplasmic biosynthesis intermediate into the medium by ensuring the efficient transfer of ferribactin to PvdP in vivo. We propose that PvdM belongs to a new dipeptidase-related protein subfamily with inactivated Zn2+ coordination sites, members of which are usually genetically linked to TonB-dependent uptake systems and often associated with periplasmic FAD-dependent oxidoreductases related to d-amino acid oxidases. We suggest that these proteins are necessary for selective binding, exposure, or transfer of specific d- and l-amino acid–containing peptides and other periplasmic biomolecules in manifold pathways.  相似文献   

16.
Interferon‐induced transmembrane proteins (IFITMs) restrict infections by many viruses, but a subset of IFITMs enhance infections by specific coronaviruses through currently unknown mechanisms. We show that SARS‐CoV‐2 Spike‐pseudotyped virus and genuine SARS‐CoV‐2 infections are generally restricted by human and mouse IFITM1, IFITM2, and IFITM3, using gain‐ and loss‐of‐function approaches. Mechanistically, SARS‐CoV‐2 restriction occurred independently of IFITM3 S‐palmitoylation, indicating a restrictive capacity distinct from reported inhibition of other viruses. In contrast, the IFITM3 amphipathic helix and its amphipathic properties were required for virus restriction. Mutation of residues within the IFITM3 endocytosis‐promoting YxxФ motif converted human IFITM3 into an enhancer of SARS‐CoV‐2 infection, and cell‐to‐cell fusion assays confirmed the ability of endocytic mutants to enhance Spike‐mediated fusion with the plasma membrane. Overexpression of TMPRSS2, which increases plasma membrane fusion versus endosome fusion of SARS‐CoV‐2, attenuated IFITM3 restriction and converted amphipathic helix mutants into infection enhancers. In sum, we uncover new pro‐ and anti‐viral mechanisms of IFITM3, with clear distinctions drawn between enhancement of viral infection at the plasma membrane and amphipathicity‐based mechanisms used for endosomal SARS‐CoV‐2 restriction.  相似文献   

17.
A high-molecular-weight c-type cytochrome, Cyc2, and a putative 22-kDa c-type cytochrome were detected in the membrane fraction released during spheroplast formation from Acidithiobacillus ferrooxidans. This fraction was enriched in outer membrane components and devoid of cytoplasmic membrane markers. The genetics, as well as the subcellular localization of Cyc2 at the outer membrane level, therefore make it a prime candidate for the initial electron acceptor in the respiratory pathway between ferrous iron and oxygen.  相似文献   

18.
The multi-protein β-barrel assembly machine (BAM) of Escherichia coli is responsible for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the bacterial outer membrane. An essential component of this complex is the BamA protein, which binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains in its N-terminus. The C-terminus of BamA contains a β-barrel domain, which tethers BamA to the outer membrane and is also thought to be involved in OMP insertion. Here we mutagenize BamA using linker scanning mutagenesis and demonstrate that all five POTRA domains are essential for BamA protein function in our experimental system. Furthermore, we generate a homology based model of the BamA β-barrel and test our model using insertion mutagenesis, deletion analysis and immunofluorescence to identify β-strands, periplasmic turns and extracellular loops. We show that the surface-exposed loops of the BamA β-barrel are essential.  相似文献   

19.
【目的】研究脱色希瓦氏菌S12周质空间c型细胞色素Mcc的功能,进一步探索和补充微生物胞外电子传递过程的机制。【方法】借助自杀质粒敲除mcc基因,通过细胞浓度测定和激光共聚焦显微镜比较分析突变株和野生株之间的浮游细胞和生物膜的生长情况,并比较分析二者在微生物燃料电池电极还原、铁还原和胞外偶氮染料还原过程中的功能。【结果】Mcc缺失对铁还原和偶氮还原没有影响,但却造成电极呼吸活性下降34.1%;与野生株相比,mcc突变株的好氧生长和厌氧浮游细胞生长无明显影响,但却显著抑制了电极表面生物膜的形成。【结论】Mcc是希瓦氏菌S12电极呼吸过程中周质空间电子传递的重要组分之一,缺失会显著抑制其电极呼吸效率以及生物膜的形成。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号