首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress and apoptosis in retinal pigment epithelium cells are involved in the pathogenesis of diabetic retinopathy (DR). Forkhead box class O 6 (FOXO6) is a member of the FOXO family that can regulate diabetes-induced oxidative stress. However, the role of FOXO6 in DR has not been clarified. The aim of the present study was to investigate the effects of FOXO6 on high glucose (HG)-induced oxidative stress and apoptosis in ARPE-19 cells. The results showed that FOXO6 was overexpressed in clinical vitreous samples from DR patients and in HG-induced ARPE-19 cells. Knockdown of FOXO6 by small interfeing RNA targeting FOXO6 (si-FOXO6) mitigated the HG-induced the production of reactive oxygen species and malondialdehyde, as well as the inhibition of superoxide dismutase activity. Knockdown of FOXO6 reduced the rate of cell apoptosis in HG-induced ARPE-19 cells. The increase in bax expression and decrease in bcl-2 expression caused by HG stimulation were reversed by si-FOXO6 transfection. Furthermore, knockdown of FOXO6 enhanced the activation of Akt/Nrf2 pathway in HG-stimulated ARPE-19 cells. Taken together, suppression of FOXO6 protects ARPE-19 cells from HG-induced oxidative stress and apoptosis, which is in part mediated by the activation of Akt/Nrf2 pathway.  相似文献   

2.
Fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the main endocannabinoid, anandamide, and related fatty acid amides, has emerged as a regulator of endocannabinoid signaling. Retinal pigment epithelial (RPE) cells are believed to be important cells in the pathogenesis of diabetic retinopathy. However, the pathophysiology of FAAH in diabetic retinopathy has not been determined. Thus, we examined the effect of high glucose (HG) on the expression of FAAH and CB(1)R in the ARPE-19 human RPE cells. We found that HG downregulated the expression of FAAH 1 mRNA and protein in ARPE-19 cells. In contrast, it upregulated the expression of CB(1)R mRNA and protein. HG-induced internalization of CB(1)R in HEK 293 cells and ARPE-19 cells was blocked by overexpression of FAAH 1 and treatment with the CB(1)R blocker, AM 251. HG-induced generation of reactive oxygen species and lipid peroxide formation were blocked by the overexpression of FAAH 1. FAAH 1 overexpression also blocked HG-induced expression of CB(1)R in the cytosolic fraction. We also investigated whether the overexpression of FAAH 1 protected against HG-induced apoptosis. High glucose increased the Bax/Bcl-2 ratio and levels of cleaved PARP, cleaved caspase-9 and caspase-3, and reduced cell viability. HG-induced apoptotic effects were reduced by the overexpression of FAAH 1, treatment with the CB(1)R-specific antagonist AM 251 and CB(1)R siRNA transfection. In conclusion, HG-induced apoptosis in ARPE-19 cells by inducing CB(1)R expression through the downregulation of FAAH 1 expression. Our results provide evidence that CB(1)R blockade through the recovery of FAAH 1 expression may be a potential anti-diabetic therapy for the treatment of diabetic retinopathy.  相似文献   

3.
Diabetic retinopathy (DR) is one of the most serious complications of diabetes mellitus (DM), however, the contribution of high glucose (HG) or hyperglycemia to DR is far from fully understanding. In the present study, we examined the expression of Fas/FasL signaling and suppressors of cytokine signaling (SOCS)1 and 3 in HG-induced human retinal pigment epithelium cells (ARPE-19 cells). And then we investigated the regulatory role of both Fas and SOCS1 in HG-induced mitochondrial dysfunction and apoptosis. Results demonstrated that HG with more than 40 mM induced mitochondrial dysfunction via reducing mitochondrial membrane potential (MMP) and via inhibiting the Bcl-2 level, which is the upstream signaling of mitochondria in ARPE-19 cells. HG also upreuglated the Fas signaling and SOCS levels probably via promoting JAK/STAT signaling in ARPE-19 cells. Moreover, the exogenous Fas or entogenous overexpressed SOCS1 accentuated the HG-induced mitochondrial dysfunction and apoptosis, whereas the knockdown of either Fas or SOCS1 reduced the HG-induced mitochondria dysfunction and apoptosis. Thus, the present study confirmed that both Fas/FasL signaling and SOCS1 promoted the HG-induced mitochondrial dysfunction and apoptosis. These results implies the key regulatory role of Fas signaling and SOCS in DR.  相似文献   

4.
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.  相似文献   

5.
6.
7.
8.
9.
10.
11.
To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.  相似文献   

12.
Diabetic retinopathy (DR) is the most prevalently occurring microvascular complication in diabetic patients that triggers severe visual impairments. The anti-angiogenesis role of FBXW7 has been identified in breast cancer. Therefore, this study intends to decipher the mechanism of FBXW7 in angiogenesis of DR. DR model was induced on mice using high-glucose (HG) and high-fat diet, and retinal microvascular endothelial cells (RMECs) isolated from normal mice were induced with HG, followed by evaluation of FBXW7, Ki67, HIF-1α and VEGF expression by immunofluorescence, immunohistochemistry or Western blot analysis. After gain- and loss-of-function assays in normal and DR mice, angiogenesis was assessed by CD31 fluorescence staining and Western blot analysis. After ectopic expression and silencing experiments in HG-induced RMECs, RMEC proliferation, migration and angiogenesis were, respectively, determined by EdU, Transwell and in vitro angiogenesis assays. The impact of FBXW7 on the ubiquitination of c-Myc was studied by cycloheximide chase assay and proteasome inhibition, and the binding of c-Myc to HDAC2 promoter by dual-luciferase reporter gene experiment. DR mice and HG-induced RMECs possessed down-regulated FBXW7 and up-regulated Ki67, HIF-1α and VEGF. Silencing FBXW7 enhanced angiogenesis in normal mouse retinal tissue, but overexpressing FBXW7 or silencing c-Myc diminished angiogenesis in DR mouse retinal tissue. Overexpressing FBXW7 or silencing c-Myc depressed proliferation, migration and angiogenesis in HG-induced RMECs. FBXW7 induced c-Myc ubiquitination degradation, and c-Myc augmented HDAC2 expression by binding to HDAC2 promoter. Conclusively, our data provided a novel sight of anti-angiogenesis role of FBXW7 in DR by modulating the c-Myc/HDAC2 axis.  相似文献   

13.
Thioredoxin-interacting protein (TXNIP) is induced by high glucose (HG), whereupon it acts to inhibit thioredoxin, thereby promoting oxidative stress. We have found that TXNIP knockdown in human renal tubular cells helped prevent the epithelial-to-mesenchymal transition (EMT). Here, we studied the potential effect of TXNIP on podocyte phenotypic alterations in diabetic nephropathy (DN) in vivo and in vitro. In conditionally immortalized mouse podocytes under HG conditions, knocking down TXNIP disrupted EMT, reactive oxygen species (ROS) production, and mammalian target of rapamycin (mTOR) pathway activation. Further, Raptor short hairpin RNA (shRNA), Rictor shRNA, and mTOR specific inhibitor KU-0063794 were used to assess if the mTOR signal pathway is involved in HG-induced EMT in podocytes. We found that Raptor shRNA, Rictor shRNA, and KU-0063794 could all restrain HG-induced EMT and ROS production in podocytes. In addition, antioxidant Tempol or N-acetylcysteine presented a prohibitive effect on HG-induced EMT in podocytes. Streptozotocin was utilized to render equally diabetic in wild-type (WT) control and TXNIP −/− (TKO) mice. Diabetes did not increase levels of 24-hr urinary protein, serum creatinine, blood urea nitrogen, and triglyceride in TXNIP −/− mice. Podocyte phenotypic alterations and podocyte loss were detected in WT but not in TKO diabetic mice. Oxidative stress was also suppressed in diabetic TKO mice relative to WT controls. Also, TXNIP deficiency suppresses the activation of mTOR in glomeruli of streptozotocin-induced diabetic mice. Moreover, TXNIP expression, mTOR activation, Nox1, and Nox4 could be detected in renal biopsy tissues of patients with DN. This suggests that decreased TXNIP could ameliorate phenotypic alterations of podocytes via inhibition of mTOR in DN, highlighting TXNIP as a promising therapeutic target.  相似文献   

14.
15.
16.
17.
Shi Y  Ren Y  Zhao L  Du C  Wang Y  Zhang Y  Li Y  Zhao S  Duan H 《FEBS letters》2011,585(12):1789-1795
Mesangial cell apoptosis contributes to the pathogenesis of diabetic nephropathy. Here we show that thioredoxin interacting protein (TXNIP) is involved in high glucose (HG)-induced mouse mesangial cell (MMC) apoptosis. HG induced activation of apoptosis signal regulating kinase-1 (ASK1) in a time-dependent manner in MMCs. Treatment with antioxidant, tempol, or knockdown of TXNIP in MMCs reduced HG-mediated apoptosis, expression of cleaved caspase-3, Bax/Bcl-2 ratio and activation of ASK1. These data suggest that knockdown of TXNIP prevented HG-induced cell apoptosis and activation of ASK1 may be via reduction of oxidative stress in MMCs.  相似文献   

18.
Diabetes induced a serious of complications including diabetic retinopathy. Our study aimed to investigate the role of Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in diabetic retinopathy. A mice model of diabetic retinopathy was established, and expression of SDF-1 and CXCR4 in retina was examined by Real-time quantitative PCR (qRT-PCR). Cells of human retinal pigment epithelial cell line ARPE-19 were treated with CXCR4 siRNAs and expression vector, and cell viability was detected by MTT assay. We found that expression of SDF-1 and CXCR4 in retina was significantly downregulated in mice with diabetic retinopathy than in normal healthy mice. High glucose treatment downregulated the expression of SDF-1 and CXCR4 in ARPE-19 cells at both mRNA and protein levels. Transfection with CXCR4 siRNAs decreased, while transfection with CXCR4 expression vector increased cell viability under high glucose treatment. We concluded that SDF-1/CXCR4 pathway improved diabetic retinopathy possibly by increasing cell viability.

Abbreviations: SDF-1: Stromal cell-derived factor 1; CXCL12: C-X-C motif chemokine 12; qRT-PCR: Real-time quantitative PCR  相似文献   


19.
Diabetic retinopathy (DR) is a serious complication of diabetes contributing to blindness in patients. Inhibiting retinal neovascularization is a potent strategy for diabetic retinopathy treatment. Reportedly, the stable expression of lin-28 homolog B (LIN28B), a member of the highly conserved RNA-binding protein LIN28 family, could promote vascular endothelial growth factor (VEGF) expression; herein, we investigated the role and mechanism of LIN28B in diabetic retinopathy progression from the perspective of microRNA (miRNA) regulation. We identified miR-152 as a miRNA that may target the LIN28B 3′-untranslated region and can be significantly downregulated under high-glucose (HG) condition. The expression of miR-152 was remarkably suppressed, whereas the expression of LIN28B was significantly increased under HG condition within both human retinal endothelial cells (hRECs) and retinal microvascular endothelial cell line (hRMECs). miR-152 overexpression significantly suppressed, while LIN28B overexpression promoted the angiogenesis and the protein levels of proangiogenesis factors in both hRECs and hRMECs. More importantly, LIN28B overexpression could remarkably attenuate the effect of miR-152 overexpression. In summary, miR-152 overexpression could inhibit HG-induced angiogenesis in both hRECs and hRMECs via targeting LIN28B and suppressing VEGF signaling. Further, in vivo experiments are needed for the application of miR-152/LIN28B axis in the treatment for diabetic retinopathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号