首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
Grizzly bears (Ursus arctos) and American black bears (U. americanus) are sympatric in much of Yellowstone National Park. Three primary bear foods, cutthroat trout (Oncorhynchus clarki), whitebark pine (Pinus albicaulis) nuts, and elk (Cervus elaphus), have declined in recent years. Because park managers and the public are concerned about the impact created by reductions in these foods, we quantified bear diets to determine how bears living near Yellowstone Lake are adjusting. We estimated diets using: 1) stable isotope and mercury analyses of hair samples collected from captured bears and from hair collection sites established along cutthroat trout spawning streams and 2) visits to recent locations occupied by bears wearing Global Positioning System collars to identify signs of feeding behavior and to collect scats for macroscopic identification of residues. Approximately 45 ± 22% ( ± SD) of the assimilated nitrogen consumed by male grizzly bears, 38 ± 20% by female grizzly bears, and 23 ± 7% by male and female black bears came from animal matter. These assimilated dietary proportions for female grizzly bears were the same as 10 years earlier in the Lake area and 30 years earlier in the Greater Yellowstone Ecosystem. However, the proportion of meat in the assimilated diet of male grizzly bears decreased over both time frames. The estimated biomass of cutthroat trout consumed by grizzly bears and black bears declined 70% and 95%, respectively, in the decade between 1997–2000 and 2007–2009. Grizzly bears killed an elk calf every 4.3 ± 2.7 days and black bears every 8.0 ± 4.0 days during June. Elk accounted for 84% of all ungulates consumed by both bear species. Whitebark pine nuts continue to be a primary food source for both grizzly bears and black bears when abundant, but are replaced by false-truffles (Rhizopogon spp.) in the diets of female grizzly bears and black bears when nut crops are minimal. Thus, both grizzly bears and black bears continue to adjust to changing resources, with larger grizzly bears continuing to occupy a more carnivorous niche than the smaller, more herbivorous black bear. © 2012 The Wildlife Society.  相似文献   

3.
4.
ABSTRACT The United States Fish and Wildlife Service uses counts of unduplicated female grizzly bears (Ursus arctos) with cubs-of-the-year to establish limits of sustainable mortality in the Greater Yellowstone Ecosystem, USA. Sightings are clustered into observations of unique bears based on an empirically derived rule set. The method has never been tested or verified. To evaluate the rule set, we used data from radiocollared females obtained during 1975–2004 to simulate populations under varying densities, distributions, and sighting frequencies. We tested individual rules and rule-set performance, using custom software to apply the rule-set and cluster sightings. Results indicated most rules were violated to some degree, and rule-based clustering consistently underestimated the minimum number of females and total population size derived from a nonparametric estimator (Chao2). We conclude that the current rule set returns conservative estimates, but with minor improvements, counts of unduplicated females-with-cubs can serve as a reasonable index of population size useful for establishing annual mortality limits. For the Yellowstone population, the index is more practical and cost-effective than capture-mark-recapture using either DNA hair snagging or aerial surveys with radiomarked bears. The method has useful application in other ecosystems, but we recommend rules used to distinguish unique females be adapted to local conditions and tested.  相似文献   

5.
Abstract: We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.  相似文献   

6.
Abstract: During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded its range. Early efforts to model grizzly bear mortality were principally focused within the United States Fish and Wildlife Service Grizzly Bear Recovery Zone, which currently represents only about 61% of known bear distribution in the GYE. A more recent analysis that explored one spatial covariate that encompassed the entire GYE suggested that grizzly bear survival was highest in Yellowstone National Park, followed by areas in the grizzly bear Recovery Zone outside the park, and lowest outside the Recovery Zone. Although management differences within these areas partially explained differences in grizzly bear survival, these simple spatial covariates did not capture site-specific reasons why bears die at higher rates outside the Recovery Zone. Here, we model annual survival of grizzly bears in the GYE to 1) identify landscape features (i.e., foods, land management policies, or human disturbances factors) that best describe spatial heterogeneity among bear mortalities, 2) spatially depict the differences in grizzly bear survival across the GYE, and 3) demonstrate how our spatially explicit model of survival can be linked with demographic parameters to identify source and sink habitats. We used recent data from radiomarked bears to estimate survival (1983–2003) using the known-fate data type in Program MARK. Our top models suggested that survival of independent (age ≥ 2 yr) grizzly bears was best explained by the level of human development of the landscape within the home ranges of bears. Survival improved as secure habitat and elevation increased but declined as road density, number of homes, and site developments increased. Bears living in areas open to fall ungulate hunting suffered higher rates of mortality than bears living in areas closed to hunting. Our top model strongly supported previous research that identified roads and developed sites as hazards to grizzly bear survival. We also demonstrated that rural homes and ungulate hunting negatively affected survival, both new findings. We illustrate how our survival model, when linked with estimates of reproduction and survival of dependent young, can be used to identify demographically the source and sink habitats in the GYE. Finally, we discuss how this demographic model constitutes one component of a habitat-based framework for grizzly bear conservation. Such a framework can spatially depict the areas of risk in otherwise good habitat, providing a focus for resource management in the GYE.  相似文献   

7.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   

8.
We compiled, summarized, and reviewed 269 incidents of bear–human conflict involving firearms that occurred in Alaska during 1883–2009. Encounters involving brown bears (Ursus arctos; 218 incidents, 81%), black bears (Ursus americanus; 30 incidents, 11%), polar bears (Ursus maritimus; 6 incidents, 2%), and 15 (6%) unidentified species provided insight into firearms success and failure. A total of 444 people and at least 367 bears were involved in these incidents. We found no significant difference in success rates (i.e., success being when the bear was stopped in its aggressive behavior) associated with long guns (76%) and handguns (84%). Moreover, firearm bearers suffered the same injury rates in close encounters with bears whether they used their firearms or not. Bears were killed in 61% (n = 162) of bear–firearms incidents. Additionally, we identified multiple reasons for firearms failing to stop an aggressive bear. Using logistic regression, the best model for predicting a successful outcome for firearm users included species and cohort of bear, human activity at time of encounter, whether or not the bear charged, and if fish or game meat was present. Firearm variables (e.g., type of gun, number of shots) were not useful in predicting outcomes in bear–firearms incidents. Although firearms have failed to protect some users, they are the only deterrent that can lethally stop an aggressive bear. Where firearms have failed to protect people, we identified contributing causes. Our findings suggest that only those proficient in firearms use should rely on them for protection in bear country. © 2012 The Wildlife Society.  相似文献   

9.
Culture is widely accepted as an important social factor present across a wide range of species. Bears have a culture as defined as behavioral traditions inherited through social learning usually from mothers to offspring. Successful bear cultures can enhance fitness and resource exploitation benefits. In contrast, some bear cultures related to response to humans and human‐related foods can be maladaptive and result in reduced fitness and direct mortality. In environments with minimal human influence most bear culture has evolved over generations to be beneficial and well adapted to enhance fitness. However, most bears across the world do not live in areas with minimal human influence and in these areas, bear culture is often changed by bear interactions with humans, usually to the detriment of bear survival. We highlight the importance of identifying unique bear cultural traits that allow efficient use of local resources and the value of careful management to preserve these adaptive cultural behaviors. It is also important to select against maladaptive cultural behaviors that are usually related to humans in order to reduce human–bear conflicts and high bear mortality. We use examples from Yellowstone National Park to demonstrate how long‐term management to reduce maladaptive bear cultures related to humans has resulted in healthy bear populations and a low level of human–bear conflict in spite of a high number of Yellowstone National Park visitors in close association with bears.  相似文献   

10.
We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued. © 2011 The Wildlife Society.  相似文献   

11.
12.
13.
In mountainous areas with sufficient snowfall, avalanche chutes are an important component of grizzly bear (Ursus arctos) habitat. Therefore, regional land-use plans have recommended retaining adjacent forest buffers to maintain security and thus reduce potential impacts of clearcut forest harvesting. Our objective was to determine if forest buffers affected selection of avalanche chutes by grizzly bears, while accounting for factors such as vegetation composition and other physical attributes. We used radio-location data from 61 grizzly bears collected between 1994 and 2000 in southern British Columbia, mapped a sample of avalanche chutes (1,045), and quantified the amount of forb, shrub, tree, and non-vegetated cover within each chute. We also measured forested buffer width on each side of the chute, solar radiation, chute size, chute frequency (no. of chutes/km), and the area of clearcut logging adjacent to chutes. Each avalanche chute was the sample unit and the number of grizzly bear radiolocations was the dependent variable. We found that natural biophysical attributes were the strongest factors predicting the level of avalanche chute use by bears. Frequency of large chutes (>100 m wide), chute area, forb content, and solar radiation all positively affected use by bears. Larger avalanche chutes had a higher proportion of forb cover than smaller chutes, and more of these large chutes per unit area provided increased forage opportunities. Based on multivariate analyses, forested buffer width or the amount of clearcut logging were not strong factors predicting the level of use. However, a post hoc univariate analysis revealed that clearcut logging reduced the amount of bear use of the best avalanche chutes (large and abundant chutes). Furthermore, because a portion of our study area contained logging but no vehicle traffic, we concluded that it was the removal of tree cover, rather than displacement by vehicles, that caused the observed pattern. Although our multivariate models did not perform well using independent validation in a different geographic area, 4 factors were consistently important (large and abundant chutes, forb content, with a negative but weaker influence of clearcutting), suggesting broad applicability of these factors in mountainous ecosystems. © 2011 The Wildlife Society.  相似文献   

14.
Miller CR  Waits LP  Joyce P 《Molecular ecology》2006,15(14):4477-4485
The fossil record indicates that the brown bear (Ursus arctos) colonized North America from Asia over 50 000 years ago. The species historically occupied the western United States and northern Mexico but has been extirpated from over 99% of this range in the last two centuries. To evaluate colonization hypotheses, subspecific classifications, and historical patterns and levels of genetic diversity in this region, we sequenced 229 nucleotides of the mitochondrial DNA control region in 108 museum specimens. The work was set in a global context by synthesizing all previous brown bear control region sequences from around the world. In mid-latitude North America a single moderately diverse clade is observed, represented by 23 haplotypes with up to 3.5% divergence. Only eight of 23 haplotypes (35%) are observed in the extensively sampled extant populations suggesting a substantial loss of genetic variability. The restriction of all haplotypes from mid-latitude North America to a single clade suggests that this region was founded by bears with a similar maternal ancestry. However, the levels and distributions of diversity also suggest that the colonizing population was not a small founder event, and that expansion occurred long enough ago for local mutations to accrue. Our data are consistent with recent genetic evidence that brown bears were south of the ice prior to the last glacial maximum. There is no support for previous subspecies designations, although bears of the southwestern United States may have had a distinctive, but recent, pattern of ancestry.  相似文献   

15.
16.
Abstract: Augmentation of large carnivore populations can be a valuable management and recovery tool, but success of many programs has not been well documented. The Cabinet—Yaak grizzly bear (Ursus arctos) population was located in northwestern Montana and northern Idaho, USA, and was estimated at 30–40 individuals. The Cabinet Mountains portion of this area may be isolated from the remainder of the zone and was the site of a test of grizzly bear population augmentation. Experimental objectives included evaluating site fidelity, reproduction, and long-term survival of the translocated bears. Four subadult females (2–6 yr old) were translocated from southeastern British Columbia, Canada, from 1990 to 1994. Three of 4 transplanted bears remained in the target area for ≥1 year and satisfied the short-term goal for site fidelity. Recent genetic evidence gathered through hair-snagging efforts has determined that at least one of the original transplanted animals has reproduced, thereby providing evidence of success for the long-term goals of survival and reproduction.  相似文献   

17.
Abstract: We used resource selection functions (RSF) to estimate the relative probability of use for grizzly bears (Ursus arctos) adjacent to the Parsnip River, British Columbia, Canada, 1998-2003. We collected data from 30 radiocollared bears on a rolling plateau where a large portion of the landscape had been modified by human activities, primarily forestry. We also monitored 24 radiocollared bears in mountain areas largely inaccessible to humans. Bears that lived on the plateau existed at less than one-quarter the density of bears in the mountains. Plateau bears ate more high-quality food items, such as meat and berries, leading us to conclude that food limitation was not responsible for the differences in densities. We hypothesized that plateau bears were limited by human-caused mortality associated with roads constructed for forestry activities. Independent estimates of bear population size from DNA-based mark-recapture techniques allowed us to link populations to habitats using RSF models to scale habitat use patterns to population density. To evaluate whether differences in land-cover type, roads, or mortality risk could account for the disparity in density we used the mountain RSF model to predict habitat use and number of bears on the plateau and vice versa. We predicted increases ranging from 34 bears to 96 bears on the plateau when switching model coefficients, excluding land-cover types; when exchanging land-cover coefficients, the model predicted that the plateau population would be 9 bears lower than was observed. Large reductions in the numbers of mountain bears were predicted by habitat-selection models of bears using the plateau landscape. Although RSF models estimated in mountain and plateau landscapes could not predict bear use and abundance in the other areas, contrasts in models between areas provided a useful tool for examining the effects of human activities on grizzly bears.  相似文献   

18.
We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595 ± 31 m SE) in spring and lower elevations (1,436 ± 27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains. © 2011 The Wildlife Society.  相似文献   

19.
Abstract: Wildlife managers need reliable estimates of population size, trend, and distribution to make informed decisions about how to recover at-risk populations, yet obtaining these estimates is costly and often imprecise. The grizzly bear (Ursus arctos) population in northwestern Montana, USA, has been managed for recovery since being listed under the United States Endangered Species Act in 1975, yet no rigorous data were available to evaluate the program's success. We used encounter data from 379 grizzly bears identified through bear rub surveys to parameterize a series of Pradel model simulations in Program MARK to assess the ability of noninvasive genetic sampling to estimate population growth rates. We evaluated model performance in terms of 1) power to detect gender-specific and population-wide declines in population abundance, 2) precision and relative bias of growth rate estimates, and 3) sampling effort required to achieve 80% power to detect a decline within 10 years. Simulations indicated that ecosystem-wide, annual bear rub surveys would exceed 80% power to detect a 3% annual decline within 6 years. Robust-design models with 2 simulated surveys per year provided precise and unbiased annual estimates of trend, abundance, and apparent survival. Designs incorporating one survey per year require less sampling effort but only yield trend and apparent survival estimates. Our results suggest that systematic, annual bear rub surveys may provide a viable complement or alternative to telemetry-based methods for monitoring trends in grizzly bear populations.  相似文献   

20.
周彬  王玉欣  肖练练  虞虎 《生态学报》2024,44(12):5173-5184
游憩是国家公园重要的生态系统文化服务功能,国家公园游憩利用潜力评价是生态保护和国民游憩福利协同提升的关键。提出了国家公园游憩利用评价指标体系,包括游憩资源价值、游憩景观质量、游憩生态环境、游憩利用条件、国家公园社区、游憩利用管理6个维度,并开展多方法融合的国家公园游憩利用潜力评价研究。结果显示:国家公园游憩利用可以从游憩资源价值、游憩景观质量、游憩生态环境、游憩利用条件、国家公园社区、游憩利用管理六个维度进行评价;钱江源国家公园游憩利用的I-IV级潜力区域面积占比分别为8.99%、29.68%、39.72%、21.61%。其中,潜力相对较高的III级和IV级区域呈带状和块状分布在钱江源大峡谷、齐溪水库、高田坑-库坑-回台山、大源头-大横古村落五个区域;潜力相对低的I级和II级区域主要分布在国家公园生态保育区以及何田乡、苏庄镇的传统农业种植区。国家公园游憩利用价值与游憩展示区有较强的关联性,生态保育和传统农业生产对游憩利用价值发挥表现出较大的空间限制。本文能为钱江源国家公园生态旅游适宜区建设提供理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号