首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plant dehydrins — Tissue location, structure and function   总被引:9,自引:0,他引:9  
Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Φ-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: YnSKn, YnKn, SKn, Kn and KnS. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSKn-type) bind to lipid vesicles that contain acidic phospholipids, and others (KnS) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87–94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SKn-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions. An erratum to this article is available at .  相似文献   

3.
Chloroplast biogenesis is a multistage process leading to fully differentiated and functionally mature plastids. Complex analysis of chloroplast biogenesis was performed on the structural and functional level of its organization during the photoperiodic plant growth after initial growth of seedlings in the darkness. We correlated, at the same time intervals, the structure of etioplasts transforming into mature chloroplasts with the changes in the photosynthetic protein levels (selected core and antenna proteins of PSI and PSII) and with the function of the photosynthetic apparatus in two plant species: bean (Phaseolus vulgaris L.) and pea (Pisum sativum L). We selected these plant species since we demonstrated previously that the mature chloroplasts differ in the thylakoid organization. We showed that the protein biosynthesis as well as photosynthetic complexes formation proceeds gradually in both plants in spite of periods of darkness. We found that both steady structural differentiation of the bean chloroplast and reformation of prolamellar bodies in pea were accompanied by a gradual increase of the photochemical activity in both species. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

4.
5.
6.
7.
Cytochome c oxidase is the terminal member of the electron transport chains of mitochondria and many bacteria. Providing an efficient mechanism for dioxygen reduction on the one hand, it also acts as a redox-linked proton pump, coupling the free energy of water formation to the generation of a transmembrane electrochemical gradient to eventually drive ATP synthesis. The overall complexity of the mitochondrial enzyme is also reflected by its subunit structure and assembly pathway, whereas the diversity of the bacterial enzymes has fostered the notion of a large family of heme-copper terminal oxidases. Moreover, the successful elucidation of 3-D structures for both the mitochondrial and several bacterial oxidases has greatly helped in designing mutagenesis approaches to study functional aspects in these enzymes. Electronic Publication  相似文献   

8.
Recent findings on the biochemical and molecular features of the following thermozymes are presented, based on their biotechnological use: α-amylase and amylopullulanase, used in starch processing; glucose isomerase, used in sweetener production; alcohol dehydrogenase, used in chemical synthesis; and alkaline phosphatase, used in diagnostics. The corresponding genes and recombinant proteins have been characterized in terms of sequence similarities, specific activities, thermophilicity, and unfolding kinetics. Site-directed and nested deletion mutagenesis were used to understand structure–function relationships. All these thermozymes display higher stability and activity than their counterparts currently used in the biotechnology industry. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

9.
《Biotechnology advances》2019,37(8):107451
The term “starch-binding domain” (SBD) has been applied to a domain within an amylolytic enzyme that gave the enzyme the ability to bind onto raw, i.e. thermally untreated, granular starch. An SBD is a special case of a carbohydrate-binding domain, which in general, is a structurally and functionally independent protein module exhibiting no enzymatic activity but possessing potential to target the catalytic domain to the carbohydrate substrate to accommodate it and process it at the active site. As so-called families, SBDs together with other carbohydrate-binding modules (CBMs) have become an integral part of the CAZy database (http://www.cazy.org/). The first two well-described SBDs, i.e. the C-terminal Aspergillus-type and the N-terminal Rhizopus-type have been assigned the families CBM20 and CBM21, respectively. Currently, among the 85 established CBM families in CAZy, fifteen can be considered as families having SBD functional characteristics: CBM20, 21, 25, 26, 34, 41, 45, 48, 53, 58, 68, 69, 74, 82 and 83. All known SBDs, with the exception of the extra long CBM74, were recognized as a module consisting of approximately 100 residues, adopting a β-sandwich fold and possessing at least one carbohydrate-binding site. The present review aims to deliver and describe: (i) the SBD identification in different amylolytic and related enzymes (e.g., CAZy GH families) as well as in other relevant enzymes and proteins (e.g., laforin, the β-subunit of AMPK, and others); (ii) information on the position in the polypeptide chain and the number of SBD copies and their CBM family affiliation (if appropriate); (iii) structure/function studies of SBDs with a special focus on solved tertiary structures, in particular, as complexes with α-glucan ligands; and (iv) the evolutionary relationships of SBDs in a tree common to all SBD CBM families (except for the extra long CBM74). Finally, some special cases and novel potential SBDs are also introduced.  相似文献   

10.
Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in “data desert” regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.  相似文献   

11.
12.
Srivastava DS 《Oecologia》2006,149(3):493-504
Although previous studies have shown that ecosystem functions are affected by either trophic structure or habitat structure, there has been little consideration of their combined effects. Such interactions may be particularly important in systems where habitat and trophic structure covary. I use the aquatic insects in bromeliads to examine the combined effects of trophic structure and habitat structure on a key ecosystem function: detrital processing. In Costa Rican bromeliads, trophic structure naturally covaries with both habitat complexity and habitat size, precluding any observational analysis of interactions between factors. I therefore designed mesocosms that allowed each factor to be manipulated separately. Increases in mesocosm complexity reduced predator (damselfly larva) efficiency, resulting in high detritivore abundances, indirectly increasing detrital processing rates. However, increased complexity also directly reduced the per capita foraging efficiency of the detritivores. Over short time periods, these trends effectively cancelled each other out in terms of detrital processing. Over longer time periods, more complex patterns emerged. Increases in mesocosm size also reduced both predator efficiency and detritivore efficiency, leading to no net effect on detrital processing. In many systems, ecosystem functions may be impacted by strong interactions between trophic structure and habitat structure, cautioning against examining either effect in isolation.  相似文献   

13.
Beta-Lactamase Database (BLDB) is a comprehensive, manually curated public resource providing up-to-date structural and functional information focused on this superfamily of enzymes with a great impact on antibiotic resistance. All the enzymes reported and characterised in the literature are presented according to the class (A, B, C and D), family and subfamily to which they belong. All three-dimensional structures of β-lactamases present in the Protein Data Bank are also shown. The characterisation of representative mutants and hydrolytic profiles (kinetics) completes the picture and altogether these four elements constitute the essential foundation for a better understanding of the structure-function relationship within this enzymes family. BLDB can be queried using different protein- and nucleotide-based BLAST searches, which represents a key feature of particular importance in the context of the surveillance of the evolution of the antibiotic resistance. BLDB is available online at http://bldb.eu without any registration and supports all modern browsers.  相似文献   

14.
Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5–10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question—How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.  相似文献   

15.
Soil bacteria, collectively named rhizobia, can establish mutualistic relationships with legume plants. Rhizobia often have multipartite genome architecture with a chromosome and several extrachromosomal replicons making these bacteria a perfect candidate for plasmid biology studies. Rhizobial plasmids are maintained in the cells using a tightly controlled and uniquely organized replication system. Completion of several rhizobial genome-sequencing projects has changed the view that their genomes are simply composed of the chromosome and cryptic plasmids. The genetic content of plasmids and the presence of some important (or even essential) genes contribute to the capability of environmental adaptation and competitiveness with other bacteria. On the other hand, their mosaic structure results in the plasticity of the genome and demonstrates a complex evolutionary history of plasmids. In this review, a genomic perspective was employed for discussion of several aspects regarding rhizobial plasmids comprising structure, replication, genetic content, and biological role. A special emphasis was placed on current post-genomic knowledge concerning plasmids, which has enriched the view of the entire bacterial genome organization by the discovery of plasmids with a potential chromosome-like role.  相似文献   

16.
The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint pat-terns(amplified by bacterial specific 16S rDNA V3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition, the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the b  相似文献   

17.
18.
The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.  相似文献   

19.
In many semi-natural and natural ecosystems, mycorrhizal fungi are the most abundant and functionally important group of soil micro-organisms. They are almost wholly dependent on their host plants to supply them with photosynthate in return for which they enable the plant to access greater quantities of nutrients. Thus, there is considerable potential for plant communities to regulate the structure and function of mycorrhizal communities. This paper reviews some of the key recent developments that have enabled the influence of plant species richness, composition, and age on mycorrhizal communities in boreal forests and temperate grassland to be determined. It discusses the emerging evidence that, in some situations, plant species richness is related to mycorrhizal species richness, in contrast to previous thinking. The paper also includes some preliminary data on the effect of host stand age on root-associated basidiomycete communities. It concludes by highlighting some of the new methodological advances that promise to unravel the linkages between mycorrhizal diversity and their function in situ.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号