共查询到20条相似文献,搜索用时 15 毫秒
1.
Pawe Kordowitzki Amin Haghani Joseph A. Zoller Caesar Z. Li Ken Raj Matthew L. Spangler Steve Horvath 《Aging cell》2021,20(5)
Cattle are an attractive animal model of fertility in women due to their high degree of similarity relative to follicle selection, embryo cleavage, blastocyst formation, and gestation length. To facilitate future studies of the epigenetic underpinnings of aging effects in the female reproductive axis, several DNA methylation‐based biomarkers of aging (epigenetic clocks) for bovine oocytes are presented. One such clock was germane to only oocytes, while a dual‐tissue clock was highly predictive of age in both oocytes and blood. Dual species clocks that apply to both humans and cattle were also developed and evaluated. These epigenetic clocks can be used to accurately estimate the biological age of oocytes. Both epigenetic clock studies and epigenome‐wide association studies revealed that blood and oocytes differ substantially with respect to aging and the underlying epigenetic signatures that potentially influence the aging process. The rate of epigenetic aging was found to be slower in oocytes compared to blood; however, oocytes appeared to begin at an older epigenetic age. The epigenetic clocks for oocytes are expected to address questions in the field of reproductive aging, including the central question: how to slow aging of oocytes. 相似文献
2.
Xi He Jiaojiao Liu Bo Liu Jingshan Shi 《Experimental biology and medicine (Maywood, N.J.)》2021,246(4):436
One of the key characteristics of aging is a progressive loss of physiological integrity, which weakens bodily functions and increases the risk of death. A robust biomarker is important for the assessment of biological age, the rate of aging, and a person''s health status. DNA methylation clocks, novel biomarkers of aging, are composed of a group of cytosine-phosphate-guanine dinucleotides, the DNA methylation status of which can be used to accurately measure subjective age. These clocks are considered accurate biomarkers of chronological age for humans and other vertebrates. Numerous studies have demonstrated these clocks to quantify the rate of biological aging and the effects of longevity and anti-aging interventions. In this review, we describe the purpose and use of DNA methylation clocks in aging research. 相似文献
3.
Kelly Jin Brianah M. McCoy Elisabeth A. Goldman Viktoria Usova Victor Tkachev Alex D. Chitsazan Anneke Kakebeen Unity Jeffery Kate E. Creevy Andrea Wills Noah Snyder-Mackler Daniel E. L. Promislow 《Aging cell》2024,23(4):e14079
Across mammals, the epigenome is highly predictive of chronological age. These “epigenetic clocks,” most of which have been built using DNA methylation (DNAm) profiles, have gained traction as biomarkers of aging and organismal health. While the ability of DNAm to predict chronological age has been repeatedly demonstrated, the ability of other epigenetic features to predict age remains unclear. Here, we use two types of epigenetic information—DNAm, and chromatin accessibility as measured by ATAC-seq—to develop age predictors in peripheral blood mononuclear cells sampled from a population of domesticated dogs. We measured DNAm and ATAC-seq profiles for 71 dogs, building separate predictive clocks from each, as well as the combined dataset. We also use fluorescence-assisted cell sorting to quantify major lymphoid populations for each sample. We found that chromatin accessibility can accurately predict chronological age (R2ATAC = 26%), though less accurately than the DNAm clock (R2DNAm = 33%), and the clock built from the combined datasets was comparable to both (R2combined = 29%). We also observed various populations of CD62L+ T cells significantly correlated with dog age. Finally, we found that all three clocks selected features that were in or near at least two protein-coding genes: BAIAP2 and SCARF2, both previously implicated in processes related to cognitive or neurological impairment. Taken together, these results highlight the potential of chromatin accessibility as a complementary epigenetic resource for modeling and investigating biologic age. 相似文献
4.
5.
Shiori Nakamura Jumpei Yamazaki Naoya Matsumoto Miho Inoue-Murayama Huiyuan Qi Masami Yamanaka Masanao Nakanishi Yojiro Yanagawa Mariko Sashika Toshio Tsubota Hideyuki Ito Michito Shimozuru 《Molecular ecology resources》2023,23(6):1211-1225
Age is an essential trait for understanding the ecology and management of wildlife. A conventional method of estimating age in wild animals is counting annuli formed in the cementum of teeth. This method has been used in bears despite some disadvantages, such as high invasiveness and the requirement for experienced observers. In this study, we established a novel age estimation method based on DNA methylation levels using blood collected from 49 brown bears of known ages living in both captivity and the wild. We performed bisulfite pyrosequencing and obtained methylation levels at 39 cytosine-phosphate-guanine (CpG) sites adjacent to 12 genes. The methylation levels of CpGs adjacent to four genes showed a significant correlation with age. The best model was based on DNA methylation levels at just four CpG sites adjacent to a single gene, SLC12A5, and it had high accuracy with a mean absolute error of 1.3 years and median absolute error of 1.0 year after leave-one-out cross-validation. This model represents the first epigenetic method of age estimation in brown bears, which provides benefits over tooth-based methods, including high accuracy, less invasiveness, and a simple procedure. Our model has the potential for application to other bear species, which will greatly improve ecological research, conservation, and management. 相似文献
6.
7.
被子植物的种子发育从双受精开始, 产生二倍体的胚和三倍体的胚乳。在种子发育和萌发过程中, 胚乳向胚组织提供营养物质, 因此胚乳对胚和种子的正常生长发育至关重要。开花植物发生基因组印迹的主要器官是胚乳。印迹基因的表达受表观遗传学机制的调控, 包括DNA甲基化和组蛋白H3K27甲基化修饰以及依赖于PolIV的siRNAs (p4-siRNAs)调控。基因组印迹的表观遗传学调控对胚乳的正常发育和种子育性具有不可或缺的重要作用。最新研究显示, 胚乳的整个基因组DNA甲基化水平降低, 而且去甲基化作用可能源于雌配子体的中央细胞。该文综述了种子发育的表观遗传学调控机制, 包括基因组印迹机制以及胚乳基因组DNA甲基化变化研究的最新进展。 相似文献
8.
Dean W Lucifero D Santos F 《Birth defects research. Part C, Embryo today : reviews》2005,75(2):98-111
Epigenetic modification of the cytosine base of DNA by its methylation introduced the possibility that beyond the inherent information contained within the nucleotide sequence there was an additional layer of information added to the underlying genetic code. DNA methylation has been implicated in a wide range of biological functions, including an essential developmental role in the reprogramming of germ cells and early embryos, the repression of endogenous retrotransposons, and a generalized role in gene expression. Special functions of DNA methylation include the marking of one of the parental alleles of many imprinted genes, a group of genes essential for growth and development in mammals with a unique parent-of-origin expression pattern, a role in stabilizing X-chromosome inactivation, and centromere function. In this regard, it is not surprising that errors in establishing or maintaining patterns of methylation are associated with a diverse group of human diseases and syndromes. 相似文献
9.
Minkyu Seo Min Su Kim Ara Jang Hyun Joo Chung Yoohun Noh Do-Hee Kim 《Animal cells and systems.》2017,21(4):223-232
KLOTHO was originally identified as an aging-suppressor gene that causes a human aging-like phenotype when tested in KLOTHO-deficient-mice. Recent evidence suggests that KLOTHO functions as a tumor suppressor by inhibiting Wnt signaling. KLOTHO gene silencing, including DNA methylation, has been observed in some human cancers. Aberrant activation of Wnt signaling plays a significant role in aging, and its silencing may be related to prostate cancer and other types of cancers. Thus, we investigated whether the expression of the anti-aging gene KLOTHO was associated with epigenetic changes in prostate cancer cell lines. KLOTHO mRNA was detected in the 22Rv1 cell line while it was not detected in DU145 and PC-3 cell lines. The restoration of KLOTHO mRNA in the DU145 and PC-3 cell lines was induced with a DNA methyltransferase inhibitor. Methylation-specific PCR was performed to determine the specific CpG sites in the KLOTHO promoter responsible for expression. In addition, the level of methylation was assessed in each CpG by performing bisulfite sequencing and quantitative pyrosequencing analysis. The results suggested a remarkable inverse relationship between KLOTHO expression and promoter methylation in prostate cancer cell lines. 相似文献
10.
DNA甲基化与克隆动物的发育异常 总被引:2,自引:1,他引:2
通过核移植技术得到的大多数克隆动物在出生前就已经死亡, 只有极少数可以发育至妊娠期末或者存活至成年, 即使是存活下来的克隆动物也伴有不同程度的发育缺陷和表型异常。DNA甲基化是支配基因正常表达的一种重要的表观遗传修饰方式, 是调节基因组功能的重要手段, 在胚胎的正常发育过程中具有显著作用。通过对DNA甲基化模式的研究, 人们发现克隆动物中存在着异常的DNA甲基化状态, 而这些异常的DNA甲基化模式可能就是导致克隆胚早期死亡以及克隆动物发育畸形的主要原因。文章主要论述了DNA甲基化的作用, 克隆动物中异常的DNA甲基化模式, 以及造成克隆胚胎甲基化异常的原因等问题。 相似文献
11.
Arne Sraas Mieko Matsuyama Marcos de Lima David Wald Jochen Buechner Tobias Gedde‐Dahl Camilla Lund Sraas Brian Chen Luigi Ferrucci John Arne Dahl Steve Horvath Shigemi Matsuyama 《Aging cell》2019,18(2)
The age of tissues and cells can be accurately estimated by DNA methylation analysis. The multitissue DNA methylation (DNAm) age predictor combines the DNAm levels of 353 CpG dinucleotides to arrive at an age estimate referred to as DNAm age. Recent studies based on short‐term observations showed that the DNAm age of reconstituted blood following allogeneic hematopoietic stem cell transplantation (HSCT) reflects the age of the donor. However, it is not known whether the DNAm age of donor blood remains independent of the recipient's age over the long term. Importantly, long‐term studies including child recipients have the potential to clearly reveal whether DNAm age is cell‐intrinsic or whether it is modulated by extracellular cues in vivo. Here, we address this question by analyzing blood methylation data from HSCT donor and recipient pairs who greatly differed in chronological age (age differences between 1 and 49 years). We found that the DNAm age of the reconstituted blood was not influenced by the recipient's age, even 17 years after HSCT, in individuals without relapse of their hematologic disorder. However, the DNAm age of recipients with relapse of leukemia was unstable. These data are consistent with our previous findings concerning the abnormal DNAm age of cancer cells, and it can potentially be exploited to monitor the health of HSCT recipients. Our data demonstrate that transplanted human hematopoietic stem cells have an intrinsic DNAm age that is unaffected by the environment in a recipient of a different age. 相似文献
12.
Alexandra M. Binder Camila Corvalan Verónica Mericq Ana Pereira José Luis Santos Steve Horvath 《Epigenetics》2018,13(1):85-94
Epigenetic age is an indicator of biological aging, capturing the impact of environmental and behavioral influences across time on cellular function. Deviance between epigenetic age and chronological age (AgeAccel) is a predictor of health. Pubertal timing has similarly been associated with cancer risk and mortality rate among females. We examined the association between AgeAccel and pubertal timing and adolescent breast composition in the longitudinal Growth and Obesity Cohort Study. AgeAccel was estimated in whole blood using the Horvath method at breast Tanner 2 (B2) and 4 (B4). Total breast volume, absolute fibro-glandular volume (FGV), and %FGV were evaluated at B4 using dual X-ray absorptiometry. The impact of AgeAccel (mean: 0; SD: 3.78) across puberty on the time to breast development (thelarche), menarche, and pubertal tempo (thelarche to menarche) was estimated using accelerated failure time models; generalized estimating equations were used to evaluate associations with breast density. A five-year increase in average adolescent AgeAccel was associated with a significant decrease in time to menarche [hazard ratio (HR): 1.37; 95% confidence interval (CI): 1.04, 1.80] adjusting for birth weight, maternal pre-pregnancy body mass index, maternal height, maternal education, B2 height, fat percentage, and cell composition. AgeAccel displayed a stronger inverse association with pubertal tempo (HR: 1.48; 95% CI: 1.10, 1.99). A five-year increase in AgeAccel was associated with 5% greater %FGV, adjusting for B4 percent body fat, and maternal traits (95% CI: 1.01, 1.10). Our study provides unique insight into the influence of AgeAccel on pubertal development in girls, which may have implications for adult health. 相似文献
13.
Kevin Perez Alberto Parras Sara Picó Cheyenne Rechsteiner Amin Haghani Robert Brooke Calida Mrabti Lucas Schoenfeldt Steve Horvath Alejandro Ocampo 《Aging cell》2024,23(2):e14058
Several premature aging mouse models have been developed to study aging and identify interventions that can delay age-related diseases. Yet, it is still unclear whether these models truly recapitulate natural aging. Here, we analyzed DNA methylation in multiple tissues of four previously reported mouse models of premature aging (Ercc1, LAKI, Polg, and Xpg). We estimated DNA methylation (DNAm) age of these samples using the Horvath clock. The most pronounced increase in DNAm age could be observed in Ercc1 mice, a strain which exhibits a deficit in DNA nucleotide excision repair. Similarly, we detected an increase in epigenetic age in fibroblasts isolated from patients with progeroid syndromes associated with mutations in DNA excision repair genes. These findings highlight that mouse models with deficiencies in DNA repair, unlike other premature aging models, display accelerated epigenetic age, suggesting a strong connection between DNA damage and epigenetic dysregulation during aging. 相似文献
14.
15.
Ze Zhang Samuel R. Reynolds Hannah G. Stolrow Ji-Qing Chen Brock C. Christensen Lucas A. Salas 《Aging cell》2024,23(3):e14071
Aging is a significant risk factor for various human disorders, and DNA methylation clocks have emerged as powerful tools for estimating biological age and predicting health-related outcomes. Methylation data from blood DNA has been a focus of more recently developed DNA methylation clocks. However, the impact of immune cell composition on epigenetic age acceleration (EAA) remains unclear as only some clocks incorporate partial cell type composition information when analyzing EAA. We investigated associations of 12 immune cell types measured by cell-type deconvolution with EAA predicted by six widely-used DNA methylation clocks in data from >10,000 blood samples. We observed significant associations of immune cell composition with EAA for all six clocks tested. Across the clocks, nine or more of the 12 cell types tested exhibited significant associations with EAA. Higher memory lymphocyte subtype proportions were associated with increased EAA, and naïve lymphocyte subtypes were associated with decreased EAA. To demonstrate the potential confounding of EAA by immune cell composition, we applied EAA in rheumatoid arthritis. Our research maps immune cell type contributions to EAA in human blood and offers opportunities to adjust for immune cell composition in EAA studies to a significantly more granular level. Understanding associations of EAA with immune profiles has implications for the interpretation of epigenetic age and its relevance in aging and disease research. Our detailed map of immune cell type contributions serves as a resource for studies utilizing epigenetic clocks across diverse research fields, including aging-related diseases, precision medicine, and therapeutic interventions. 相似文献
16.
Lene Christiansen Adam Lenart Qihua Tan James W. Vaupel Abraham Aviv Matt McGue Kaare Christensen 《Aging cell》2016,15(1):149-154
An epigenetic profile defining the DNA methylation age (DNAm age) of an individual has been suggested to be a biomarker of aging, and thus possibly providing a tool for assessment of health and mortality. In this study, we estimated the DNAm age of 378 Danish twins, age 30–82 years, and furthermore included a 10‐year longitudinal study of the 86 oldest‐old twins (mean age of 86.1 at follow‐up), which subsequently were followed for mortality for 8 years. We found that the DNAm age is highly correlated with chronological age across all age groups (r = 0.97), but that the rate of change of DNAm age decreases with age. The results may in part be explained by selective mortality of those with a high DNAm age. This hypothesis was supported by a classical survival analysis showing a 35% (4–77%) increased mortality risk for each 5‐year increase in the DNAm age vs. chronological age. Furthermore, the intrapair twin analysis revealed a more‐than‐double mortality risk for the DNAm oldest twin compared to the co‐twin and a ‘dose–response pattern’ with the odds of dying first increasing 3.2 (1.05–10.1) times per 5‐year DNAm age difference within twin pairs, thus showing a stronger association of DNAm age with mortality in the oldest‐old when controlling for familial factors. In conclusion, our results support that DNAm age qualifies as a biomarker of aging. 相似文献
17.
18.
19.
人恶性黑色素瘤(malignant melanoma)是近年来高发病率和高死亡率的肿瘤之一.目前尚缺乏有效的治疗方法.而表观遗传如DNA甲基化(DNA methylation)、组蛋白修饰(histonemodification)、染色质重塑(chromatin remodeling)及RNA干扰(RNA interference,RNAi)等改变在人黑色素瘤的发生、发展和转移中有重要作用.阐明黑色素瘤发生发展的表观遗传学机制已引起了学者的普遍关注.本文综述了人类黑色素瘤发生发展中所特异的表观遗传改变:CpG岛的异常甲基化修饰、组蛋白甲基化和乙酰化修饰、染色质重塑以及microRNA在黑色素瘤发生和转移中的作用,并对应用表观遗传修饰治疗人类黑色素瘤进行了探讨. 相似文献