首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic degradation of the major cartilage macromolecules, aggrecan and type II collagen, is a key pathological event in osteoarthritis (OA). ADAMTS-4 and ADAMTS-5, the primary aggrecanases capable of cartilage aggrecan cleavage, are synthesized as latent enzymes and require prodomain removal for activity. The N-termini of the mature proteases suggest that activation involves a proprotein convertase, but the specific family member responsible for aggrecanase activation in cartilage in situ has not been identified. Here we describe purification of a proprotein convertase activity from human OA cartilage. Through biochemical characterization and the use of siRNA, PACE4 was identified as a proprotein convertase responsible for activation of aggrecanases in osteoarthritic and cytokine-stimulated cartilage. Posttranslational activation of ADAMTS-4 and ADAMTS-5 was observed in the extracellular milieu of cartilage, resulting in aggrecan degradation. These findings suggest that PACE4 represents a novel target for the development of OA therapeutics.  相似文献   

2.
3.
Recent studies have indicated that nuclear protein of 95 kDa (Np95) is essential for maintaining genomic methylation by recruiting DNA methyltransferase (Dnmt) 1 to hemi‐methylated sites. Here, we show that Np95 interacts more strongly with regulatory domains of the de novo methyltransferases Dnmt3a and Dnmt3b. To investigate possible functions, we developed an epigenetic silencing assay using fluorescent reporters in embryonic stem cells (ESCs). Interestingly, silencing of the cytomegalovirus promoter in ESCs preceded DNA methylation and was strictly dependent on the presence of either Np95, histone H3 methyltransferase G9a or Dnmt3a and Dnmt3b. Our results indicate a regulatory role for Np95, Dnmt3a and Dnmt3b in mediating epigenetic silencing through histone modification followed by DNA methylation.  相似文献   

4.
5.
6.
Methylation of cytosine residues in DNA plays a critical role in the silencing of gene expression, organization of chromatin structure, and cellular differentiation of eukaryotes. Previous studies failed to detect 5-methylcytosine in Dictyostelium genomic DNA, but the recent sequencing of the Dictyostelium genome revealed a candidate DNA methyltransferase gene (dnmA). The genome sequence also uncovered an unusual distribution of potential methylation sites, CpG islands, throughout the genome. DnmA belongs to the Dnmt2 subfamily and contains all the catalytic motifs necessary for cytosine methyltransferases. Dnmt2 activity is typically weak in Drosophila melanogaster, mouse, and human cells and the gene function in these systems is unknown. We have investigated the methylation status of Dictyostelium genomic DNA with antibodies raised against 5-methylcytosine and detected low levels of the modified nucleotide. We also found that DNA methylation increased during development. We searched the genome for potential methylation sites and found them in retrotransposable elements and in several other genes. Using Southern blot analysis with methylation-sensitive and -insensitive restriction endonucleases, we found that the DIRS retrotransposon and the guaB gene were indeed methylated. We then mutated the dnmA gene and found that DNA methylation was reduced to about 50% of the wild-type level. The mutant cells exhibited morphological defects in late development, indicating that DNA methylation has a regulatory role in Dictyostelium development. Our findings establish a role for a Dnmt2 methyltransferase in eukaryotic development.  相似文献   

7.
8.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

9.
10.
11.
DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown. Using amplification-free whole-genome bisulfite sequencing, which can be used with minute amounts of DNA, we constructed the base-resolution methylome maps of GVOs, non-growing oocytes (NGOs), and mutant GVOs lacking the DNA methyltransferase Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3L. We found that nearly two-thirds of all methylcytosines occur in a non-CG context in GVOs. The distribution of non-CG methylation closely resembled that of CG methylation throughout the genome and showed clear enrichment in gene bodies. Compared to NGOs, GVOs were over four times more methylated at non-CG sites, indicating that non-CG methylation accumulates during oocyte growth. Lack of Dnmt3a or Dnmt3L resulted in a global reduction in both CG and non-CG methylation, showing that non-CG methylation depends on the Dnmt3a-Dnmt3L complex. Dnmt3b was dispensable. Of note, lack of Dnmt1 resulted in a slight decrease in CG methylation, suggesting that this maintenance enzyme plays a role in non-dividing oocytes. Dnmt1 may act on CG sites that remain hemimethylated in the de novo methylation process. Our results provide a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes.  相似文献   

12.
13.
14.
Epigenetic mechanisms are likely to be involved in the development of obesity. This study was designed to examine the role of a DNA methyltransferase (Dnmt3a), in obese adipose tissue. The gene expression of Dnmts was examined by quantitative real‐time PCR analysis. Transgenic mice overexpressing Dnmt3a in the adipose tissue driven by the aP2 promoter were created (Dnmt3a mice). DNA methylation of downregulated genes was examined using bisulfite DNA methylation analysis. Dnmt3a mice were fed a methyl‐supplemented or high‐fat diet, and subjected to body weight measurement and gene expression analysis of the adipose tissue. Expression of Dnmt3a was markedly upregulated in the adipose tissue of obese mice. The complementary DNA (cDNA) microarray analysis of Dnmt3a mice revealed a slight decrease in the gene expression of secreted frizzled‐related protein 1 (SFRP1) and marked increase in that of interferon responsive factor 9 (IRF9). In the SFRP1 promoter, DNA methylation was not markedly increased in Dnmt3a mice relative to wild‐type mice. In experiments with a high‐fat diet or methyl‐supplemented diet, body weight did not differ significantly with the genotypes. Gene expression levels of inflammatory cytokines such as tumor necrosis factor‐α (TNF‐α) and monocyte chemoattractant protein‐1 (MCP‐1) were higher in Dnmt3a mice than in wild‐type mice on a high‐fat diet. This study suggests that increased expression of Dnmt3a in the adipose tissue may contribute to obesity‐related inflammation. The data highlight the potential role of Dnmt3a in the adult tissue as well as in the developing embryo and cancer.  相似文献   

15.
Osteoarthritis (OA) is characterized by articular cartilage degradation and joint inflammation. The purpose of the present study is to elucidate the role of the specific function of PRMT1 in chondrocytes and its association with the pathophysiology of OA. We observed that the expression of PRMT1 was apparently upregulated in OA cartilage, as well as in chondrocytes stimulated with IL-1β. Additionally, knockdown of PRMT1 suppressed interleukin 1 beta (IL-1β)-induced extracellular matrix (ECM) metabolic imbalance by regulating the expression of MMP-13, ADAMTS-5, COL2A1, and ACAN. Furthermore, silencing of PRMT1 dramatically declined the production of prostaglandin E2 (PGE2) and nitric oxide as well as the level of pro-inflammatory cytokine IL-6 and TNF-α. Mechanistic analyses further revealed that IL-1β-induced activation of the Hedgehog/Gli-1 signaling is suppressed upon PRMT1 knockdown. However, the effects of inhibition of PRMT1-mediated IL-1β-induced cartilage matrix degradation and inflammatory response in OA chondrocytes were obviously abolished by Hedgehog agonist Purmorphamine (Pur). Our data collectively suggest that silencing of PRMT1 exerts anti-catabolic and anti-inflammatory effects on IL-1β-induced chondrocytes via suppressing the Gli-1 mediated Hedgehog signaling pathway, indicating that PRMT1 plays a critical role in OA development and serves as a promising therapeutic target for OA.  相似文献   

16.
17.
Dnmt3a is a de novo DNA methyltransferase that modifies unmethylated DNA. In contrast Dnmt1 shows high preference for hemimethylated DNA. However, Dnmt1 can be activated for the methylation of unmodified DNA. We show here that the Dnmt3a and Dnmt1 DNA methyltransferases functionally cooperate in de novo methylation of DNA, because a fivefold stimulation of methylation activity is observed if both enzymes are present. Stimulation is observed if Dnmt3a is used before Dnmt1, but not if incubation with Dnmt1 precedes Dnmt3a, demonstrating that methylation of the DNA by Dnmt3a stimulates Dnmt1 and that no physical interaction of Dnmt1 and Dnmt3a is required. If Dnmt1 and Dnmt3a were incubated together a slightly increased stimulation is observed that could be due to a direct interaction of these enzymes. In addition, we show that Dnmt1 is stimulated for methylation of unmodified DNA if the DNA already carries some methyl groups. We conclude that after initiation of de novo methylation of DNA by Dnmt3a, Dnmt1 becomes activated by the pre-existing methyl groups and further methylates the DNA. Our data suggest that Dnmt1 also has a role in de novo methylation of DNA. This model agrees with the biochemical properties of these enzymes and provides a mechanistic basis for the functional cooperation of different DNA MTases in de novo methylation of DNA that has also been observed in vivo.  相似文献   

18.
19.
Changes in genomic DNA methylation patterns are generally assumed to play an important role in the etiology of human cancers. The Dnmt3a enzyme is required for the establishment of normal methylation patterns, and mutations in Dnmt3a have been described in leukemias. Deletion of Dnmt3a in a K-ras–dependent mouse lung cancer model has been shown to promote tumor progression, which suggested that the enzyme might suppress tumor development by stabilizing DNA methylation patterns. We have used whole-genome bisulfite sequencing to comprehensively characterize the methylomes from Dnmt3a wildtype and Dnmt3a-deficient mouse lung tumors. Our results show that profound global methylation changes can occur in K-ras–induced lung cancer. Dnmt3a wild-type tumors were characterized by large hypomethylated domains that correspond to nuclear lamina-associated domains. In contrast, Dnmt3a-deficient tumors showed a uniformly hypomethylated genome. Further data analysis revealed that Dnmt3a is required for efficient maintenance methylation of active chromosome domains and that Dnmt3a-deficient tumors show moderate levels of gene deregulation in these domains. In summary, our results uncover conserved features of cancer methylomes and define the role of Dnmt3a in maintaining DNA methylation patterns in cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号