首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using the DNA-specific dye BAO [2,5-bis-(4'-aminophenyl-(1')]-1,3,4-oxadiazol), we have examined spermiogenesis in wild-type males of Drosophila melanogaster and in males carrying various combinations of the Sd and Rsp mutations involved in segregation distortion. Wild-type strains, even those newly collected from nature, are heterogeneous with respect to the incidence of spermiogenic abnormalities, principally in having a variable number of spermatid nuclei per cyst that fail to undergo complete elongation. Among segregation distorter males, Rsp/Rsp homozygotes have the greatest incidence of nuclear nonelongation or incomplete elongation, Rsp/Rsp + heterozygotes are intermediate, while Rsp+/ Rsp+ homozygotes have the least amount of abnormality. Indeed, Sd Rsp+/Sd+Rsp+ males have significantly fewer spermiogenic aberrations than do wild-type strains.  相似文献   

2.
On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER   总被引:14,自引:13,他引:1       下载免费PDF全文
Barry Ganetzky 《Genetics》1977,86(2):321-355
The segregation distorter (SD) complex is a naturally occurring meiotic drive system with the property that males heterozygous for an SD-bearing chromosome 2 and an SD+-bearing homolog transmit the SD-bearing chromosome almost exclusively. This distorted segregation is the consequence of an induced dysfunction of those sperm that receive the SD+ homolog. From previous studies, two loci have been implicated in this phenomenon: the Sd locus which is required to produce distortion, and the Responder (Rsp) locus that is the site at which Sd acts. There are two allelic alternatives of Rsp—sensitive (Rspsens) and insensitive (Rspins); a chromosome carrying Rspins is not distorted by SD. In the present study, the function and location of each of these elements was examined by a genetic and cytological characterization of X-ray-induced mutations at each locus. The results indicate the following: (1) the Rsp locus is located in the proximal heterochromatin of 2R; (2) a deletion for the Rsp locus renders a chromosome insensitive to distortion; (3) the Sd locus is located to the left of pr (2-54.5), in the region from 37D2-D7 to 38A6-B2 of the salivary chromosome map; (4) an SD chromosome deleted for Sd loses its ability to distort; (5) there is another important component of the SD system, E(SD), in or near the proximal heterochromatin of 2L, that behaves as a strong enhancer of distortion. The results of these studies allow a reinterpretation of results from earlier analyses of the SD system and serve to limit the possible mechanisms to account for segregation distortion.  相似文献   

3.
Daniel L. Hartl 《Genetics》1974,76(3):477-486
Two major loci in the Tftcn region of an SD chromosome have been separated by recombination and identified. The allele at the left-hand locus on an SD chromosome is called Sd; the allele at the right-hand locus is called Rsp. Both Sd and Rsp are necessary to bring about a distortion of the segregation ratio in heterozygous SD males, although the particular degree of distortion exhibited by an SD chromosome is influenced by the constellation of polygenic modifiers of SD in the genome. The coupling phase of the alleles, Sd Rsp/Sd+Rsp+, produces about 89-90% of Sd Resp-bearing progeny. The repulsion phase, Sd Rsp+/Sd+ Rsp, produces 10-20% of Sd Rsp+-bearing progeny. No coupling-repulsion effects between Sd and Rsp are apparent.  相似文献   

4.
Brittnacher JG  Ganetzky B 《Genetics》1983,103(4):659-673
Segregation distorter (SD) chromosomes are preferentially transmitted to offspring from heterozygous SD/SD+ males owing to the induced dysfunction of the SD+-bearing sperm. This phenomenon involves at least two major loci: the Sd locus whose presence is necessary for distortion to occur and the Rsp locus which acts as the site of Sd action. Several additional loci on SD chromosomes enhance distortion.—In a previous study deletions were used to map the Sd locus and to determine some of its properties. We have extended this analysis with the isolation and characterization of 14 new deletions in the Sd region. From our results we conclude (1) SD chromosomes contain a single Sd locus located in region 37D2-6 of the salivary gland chromosome map. Deletion of this locus in any of three SD chromosomes now studied results in complete loss of ability to distort a sensitive chromosome; (2) the reduced male fecundity observed in many homozygous SD or SDi/SDj combinations is due at least in part to the action of the Sd locus. The fecundity of these males can be substantially increased by deletion of one Sd locus. Thus, it is the presence of two doses of Sd rather than the absence of Sd+ that produces the lowered male fecundity in SD homozygotes; (3) Sd behaves as a neomorph, whereas Sd+, if it exists at all, is amorphic with respect to segregation distortion; (4) these results support a model in which the Sd product is made in limiting amounts and the interaction of this product with the Rsp locus causes sperm dysfunction. The Sd product appears to act preferentially at Rsps (sensitive-Responder) but may also act at Rspi (insensitive-Responder).  相似文献   

5.
Lyttle TW 《Genetics》1986,114(1):203-216
A portion of the Segregation distorter (SD) chromosome, including both the Sd and E(SD) loci, has been moved by insertional translocation from SD Roma into YL . This Dp(2;Y)SD chromosome shows a negligible reduction in its ability to cause dysfunction of Rsp s-bearing sperm when compared to the parent SD chromosome, suggesting that SD can still act effectively, even when removed from its normal second chromosome milieu, and that its activity level does not depend on pairing with a normal autosomal homologue. Male genotypes have been constructed using this Dp(2;Y)SD along with a standard SD chromosome (either SD Roma or R( SD-36)-1bw) and a third chromosome suppressor of SD (TM6) in all possible three-way combinations. The observed level of SD-mediated dysfunction in each case is most compatible with a model that assumes that all SD elements act additively (in terms of M, the probit transformation of the probability of sperm dysfunction), rather than multiplicatively. The additive action of SD elements contrasts with the independent response to SD activity exhibited by multiple Rsps copies.  相似文献   

6.
Lyttle TW 《Genetics》1984,106(3):423-434
Analysis of X-ray-induced deletions in the Segregation Distorter (SD) chromosome, SD-5, revealed that this chromosome had a gene proximal to lt in the centric heterochromatin of 2L that strongly enhanced the meiotic drive caused by the SD chromosome. This Enhancer of Segregation Distortion [E(SD)] locus had not been characterized in earlier studies of SD chromosomes because it cannot be readily separated by recombination from the Responder (Rsp) locus in the proximal heterochromatin of 2R.—To determine whether E(SD) is a general component of all SD chromosomes and to examine further its effects on distortion, we produced deletions of E(SD) in three additional SD chromosomes. Analysis of these deletions leads to the following conclusions: (1) along with Sd and Rsp, E(SD) is common to all SD chromosomes; (2) the E(SD) allele on each SD chromosome enhances distortion by the same amount, which indicates that allelic variation at the E(SD) locus is not responsible for the different drive strengths seen among SD chromosomes; (3) E(SD) causes very little or no distortion by itself in the absence of Sd; (4) E(SD), like Sd, acts in a dosage-dependent manner; (5) E(SD) exerts its effect in cis or trans to Sd; and (6) if E(SD)+ exists, its function is not related to SD.  相似文献   

7.
Plethodontid salamanders have n = 13 or 14 large metacentric or sub-metacentric chromosomes. Sperm nuclei from Plethodon cinereus measure 72×1 m. The nucleoprotein of spermatids is at first finely granular. In elongate spermatids it clumps into larger granules, which then fuse to form the compact nucleoprotein of the mature sperm. The nuclei of mature sperm are negatively birefringent with respect to their length. — 3H RNA complementary to high-density satellite DNA of centromeric heterochromatin in P. cinereus has been hybridized in-situ to spermatids and sperm, and its site of binding to these cells has been examined by autoradiography. Labelling of round spermatid nuclei is localized in a single patch. Elongate spermatid nuclei are labelled only over the rear quarter of the nucleus. Label over the nuclei of mature sperm is localized in a region extending 10–20 m forwards from the rear of the nucleus. — In P. cinereus the ribosomal genes are located near the centromere on the short arm of chromosome 7. 3H ribosomal RNA hybridizes to a single patch in round spermatid nuclei. Elongate spermatid nuclei show label over a short segment of the rear half of the nucleus. In spermatids nearing maturity the labelled region is never more than 20 m long. — These results indicate that in P. cinereus each chromosome is arranged in a U formation with its centromere at the base of the sperm nucleus, and its arms extended forwards along the length of the nucleus. — Among plethodontids, increase in C value and corresponding increase in chromosome size is accompanied by increase in the length rather than the width of the sperm nucleus. — 3H ribosomal RNA hybridizes to a short segment in spermatid and sperm nuclei from Xenopus and Triturus. In these animals, the position of the labelled segment varies from sperm to sperm.  相似文献   

8.
《Fly》2013,7(6):280-290
The Segregation Distorter (SD) system in Drosophila melanogaster causes the transmission of the SD chromosome at the expense of the SD+ chromosome. This occurs through a defect in sperm-specific chromatin condensation of the SD+-bearing spermatids of the SD/SD+ male. The Sd gene encodes a truncated form of RanGAP that is missing a nuclear export signal and is therefore trapped in the nucleus; normally RanGAP is found at the periphery of the nuclear membrane and is required for normal Ran-mediated nuclear transport. The presence of active RanGAP in the nucleus interferes with nuclear export and causes distortion. We show that mutations that affect nuclear import and export can enhance distortion in an SD background, thus verifying that the defect in nuclear transport is responsible for the unequal transmission of chromosomes. In addition, we identify several genes involved in chromatin condensation which also cause distortion in an SD background, opening the way to the dissection of the mechanism of segregation distortion.  相似文献   

9.
The volumes of sperm heads were estimated from three-dimensional reconstructions of serially sectioned bundles of nearly mature spermatid nuclei. Cysts from males in which all sperm are expected to have comparable amounts of chromatin (X/Y and In(3LR)/+) show unimodal frequency distributions of nuclear volumes, whereas cysts from males in which meiotic segregation is expected to deliver unequal amounts of chromatin material to spermatid nuclei show two (XY/O and XY/Y) or more (T(2;3)/+ and C(2L);C(2R)) modes. The mean volumes of the subpopulations in these cases are related in the same proportions as the metaphase lengths of their chromosomal complements. Thus the volumes of sperm nuclei are proportional to their DNA content. Sperm head shape, on the other hand, does not appear to be very sensitive to chromosomal constitution, as heads of different size do not vary greatly in shape.—The numbers of sperm heads in the various size classes in a cyst depart from mendelian expectations; these departures are caused by the elimination, during individualization, of chromosomes contained within micronuclei that are formed in spermatids at the end of the second meiotic division. The effect of this chromosome loss is to increase the proportion of nullosomic gametes in the sperm pool.—The relative frequencies of XY-bearing and nullo-X, nullo-Y sperm in XY/O males were estimated from the volume measurements. Taking this estimate as a measure of the fertilizing population, it is possible to infer from the change in sex ratio over time following insemination, that XY-bearing sperm have an advantage of 1.5 over nullo-X, nullo-Y sperm in leaving the seminal receptacle of the female for fertilization of ova.  相似文献   

10.
Diploid sexual reproduction involves segregation of allelic pairs, ensuring equal representation of genotypes in the gamete pool. Some genes, however, are able to “cheat” the system by promoting their own transmission. The Segregation distorter (Sd) locus in Drosophila melanogaster males is one of the best-studied examples of this type of phenomenon. In this system the presence of Sd on one copy of chromosome 2 results in dysfunction of the non–Sd-bearing (Sd+) sperm and almost exclusive transmission of Sd to the next generation. The mechanism by which Sd wreaks such selective havoc has remained elusive. However, its effect requires a target locus on chromosome 2 known as Responder (Rsp). The Rsp locus comprises repeated copies of a satellite DNA sequence and Rsp copy number correlates with sensitivity to Sd. Under distorting conditions during spermatogenesis, nuclei with chromosomes containing greater than several hundred Rsp repeats fail to condense chromatin and are eliminated. Recently, Rsp sequences were found as small RNAs in association with Argonaute family proteins Aubergine (Aub) and Argonaute3 (AGO3). These proteins are involved in a germline-specific RNAi mechanism known as the Piwi-interacting RNA (piRNA) pathway, which specifically suppresses transposon activation in the germline. Here, we evaluate the role of piRNAs in segregation distortion by testing the effects of mutations to piRNA pathway components on distortion. Further, we specifically targeted mutations to the aub locus of a Segregation Distorter (SD) chromosome, using ends-out homologous recombination. The data herein demonstrate that mutations to piRNA pathway components act as enhancers of SD.  相似文献   

11.
Summary Drosophila melanogaster males heterozygous for the second chromosome locus Segregation Distorter preferentially transmit this chromosome to their progeny due to a dysfunctioning of SD +-bearing sperm. SD males with a normal sex chromosome constitution produce more females than males among SD + progeny. This report shows that this unequal recovery of sexes is enhanced from XY/Y; SD/SD + males and enhanced still further from XY/O; SD/SD + males. It is argued that the probability that a SD +-bearing sperm will dysfunction is related to its sex chromsome complement, with the relative probabilities of dysfunction ranked O> Y> X> XY. It is shown that a modified probit analysis accounts for the relationship between sex ratio and second chromosome segregation frequency for all paternal genotypes. Finally, SD/SD + males show no increase in sex chromosome nondisjunction with respect to a control.R. E. Denell was supported by U.S.P.H.S. Training Grant No. GM00337 and by a U.S.P.H.S. Postdoctoral Fellowship; George L. Gabor Miklos was supported by A.E.C. Contract No. AT (04-3)-34 PA150.  相似文献   

12.
Houtchens K  Lyttle TW 《Genetica》2003,117(2-3):291-302
In D. melanogaster males carrying Segregation Distorter (SD) second chromosomes, sperm receiving sensitive alleles of the Responder (Rsp) locus are subject to high rates of dysfunction. The Rsp region is located in 2R immediately adjacent to the centromere in heterochromatic band 39, and covers roughly 600 kb of material, of which approximately 85 kb is comprised of several hundred copies of a 240-bp satellite DNA sequence. Cytological observations as well as molecular analysis of rearrangements which bisect h39 indicate that sensitivity of the Rsp target to SD action is also subdivisible, and sensitivities of the component pieces appear to be correlated with copy number of the 240 bp repeat. In an attempt to examine possible higher order sequence structure for these blocks, PCR using single primers derived from a canonical repeat was used to identify potential reversals of direction of tandem arrays; that is, head-to-head or tail-to-tail junctions. Surprisingly, for two different Rsp alleles, only a single such reversal product for each was identified, differing in size and sequence between alleles. Sequencing of PCR products identified diverged copies of the canonical repeats that would not have been found using the levels of DNA stringency employed in earlier studies. Examination of Southern digests and slot-blots for DNA quantification indicates that adding the estimated numbers of such diverged copies to the canonical repeat copies discovered earlier is potentially sufficient to account for the entire 600 kb Rsp region. This adds strength to the hypothesis that this extended family of repeats is in fact the target of SD-mediated sperm dysfunction. Implications of these results for understanding the evolution of repetitive DNA are also discussed.  相似文献   

13.
Daniel L. Hartl 《Genetics》1975,80(3):539-547
In(2L+2R)Cy and In(2LR)Pm2 are inversion-bearing chromosomes, the former carrying a paracentric inversion in each arm and the latter carrying a long pericentric. Both chromosomes produce normal segregation ratios when present in heterozygous males with certain segregation distorter chromosomes. The apparent suppression of distortion by these chromosomes was long attributed to a failure of synapsis, but this hypothesis has fallen out of favor recently because a large number of chromosome aberrations, particularly translocations and inversions, suppress distortion even though their breakpoints fall into no recognizable pattern. Although failure of synapsis does not appear to be the mechanism of suppression of distortion, what is responsible for the suppression remains unknown. In this paper it is shown that In(2L+2R)Cy and In(2LR)Pm2 suppress segregation distortion because they carry Rsp, a component of the segregation distorter system that renders a chromosome insensitive to distortion. Both chromosomes induce "suicide" of chromosomes carrying Sd Rsp+.  相似文献   

14.
Chromosome aberrations induced at the first-cleavage metaphase of eggs fertilized with sperm recovered from spermiogenic cells which had been X-irradiated and treated with mitomycin C (MMC) at various stages were observed using in vitro fertilization and embryo culture technique. Furthermore, the repair capacity of the fertilized eggs for X-ray- and MMC-induced DNA damage which was induced in the spermiogenic cells and retained in the sperm until fertilization was investigated by analysis of the potentiation effects of 2 repair inhibitors, 3-aminobenzamide (3AB) and caffeine on the yield of chromosome aberrations. The frequency of chromosome aberrations observed in the eggs fertilized with sperm recovered from the early spermatid to late spermatocyte stage with X-irradiation of 4 Gy (16-20 days after X-irradiation) was markedly higher than that in the eggs fertilized with sperm recovered from spermatozoa to late spermatid stage (0-8 days after X-irradiation). The induced chromosome aberrations predominantly consisted of chromosome-type aberrations, the main type being chromosome fragment followed by chromosome exchange through all the spermiogenic stages. On the other hand, a high frequency of chromosome aberrations was not induced through all the stages with MMC treatment of 5 mg/kg. The remarkable potentiation effects of 3AB and caffeine were found in the eggs fertilized with sperm recovered from almost all the spermiogenic stages after X-irradiation. In the MMC treatment, a remarkable caffeine effect was observed occasionally in mid-early spermatids to late spermatocytes where a large amount of MMC damage could be induced. These results suggest that the large amount of DNA lesions induced in spermiogenic cells by X-rays and MMC persist as reparable damage until sperm maturation and are effectively repaired in the cytoplasm of the fertilized eggs.  相似文献   

15.
16.
Huh JR  Vernooy SY  Yu H  Yan N  Shi Y  Guo M  Hay BA 《PLoS biology》2004,2(1):E15
Spermatozoa are generated and mature within a germline syncytium. Differentiation of haploid syncytial spermatids into single motile sperm requires the encapsulation of each spermatid by an independent plasma membrane and the elimination of most sperm cytoplasm, a process known as individualization. Apoptosis is mediated by caspase family proteases. Many apoptotic cell deaths in Drosophila utilize the REAPER/HID/GRIM family proapoptotic proteins. These proteins promote cell death, at least in part, by disrupting interactions between the caspase inhibitor DIAP1 and the apical caspase DRONC, which is continually activated in many viable cells through interactions with ARK, the Drosophila homolog of the mammalian death-activating adaptor APAF-1. This leads to unrestrained activity of DRONC and other DIAP1-inhibitable caspases activated by DRONC. Here we demonstrate that ARK- and HID-dependent activation of DRONC occurs at sites of spermatid individualization and that all three proteins are required for this process. dFADD, the Drosophila homolog of mammalian FADD, an adaptor that mediates recruitment of apical caspases to ligand-bound death receptors, and its target caspase DREDD are also required. A third apoptotic caspase, DRICE, is activated throughout the length of individualizing spermatids in a process that requires the product of the driceless locus, which also participates in individualization. Our results demonstrate that multiple caspases and caspase regulators, likely acting at distinct points in time and space, are required for spermatid individualization, a nonapoptotic process.  相似文献   

17.
The human and mouse sex chromosomes are enriched in multicopy genes required for postmeiotic differentiation of round spermatids into sperm. The gene Sly is present in multiple copies on the mouse Y chromosome and encodes a protein that is required for the epigenetic regulation of postmeiotic sex chromosome expression. The X chromosome carries two multicopy genes related to Sly: Slx and Slxl1. Here we investigate the role of Slx/Slxl1 using transgenically-delivered small interfering RNAs to disrupt their function. We show that Slx and Slxl1 are important for normal sperm differentiation and male fertility. Slx/Slxl1 deficiency leads to delay in spermatid elongation and sperm release. A high proportion of delayed spermatids are eliminated via apoptosis, with a consequent reduced sperm count. The remaining spermatozoa are abnormal with impaired motility and fertilizing abilities. Microarray analyses reveal that Slx/Slxl1 deficiency affects the metabolic processes occurring in the spermatid cytoplasm but does not lead to a global perturbation of sex chromosome expression; this is in contrast with the effect of Sly deficiency which leads to an up-regulation of X and Y chromosome genes. This difference may be due to the fact that SLX/SLXL1 are cytoplasmic while SLY is found in the nucleus and cytoplasm of spermatids.  相似文献   

18.
19.
Charlesworth B  Hartl DL 《Genetics》1978,89(1):171-192
Two two-locus models of the population dynamics of the segregation distortion (SD) polymorphism of Drosophila melanogaster are described. One model is appropriate for understanding the population genetics of SD in nature, whereas the other is a special case appropriate for understanding an artificial population that has been extensively analysed. The models incorporate the general features of the Sd and Rsp loci which form the core of the SD system. It is shown that the SD polymorphism can be established only when there is sufficiently tight linkage between Sd and Rsp. An approximate treatment, valid for tight linkage, is given of all the equilibria of the system and their stabilities. It is shown that the observed composition of natural and artificial populations with respect to the Sd and Rsp loci is predicted well by the model, provided that restrictions are imposed on the fertilities of certain genotypes. Highly oscillatory paths towards equilibrium are usually to be expected on the basis of this model. The selection pressures on inversions introduced into this system are also investigated.  相似文献   

20.
The normal male of Drosophila subobscura displays polymegaly, which is the presence of two sizes of spermatozoa in the same testis. It is still unknown whether both kinds of sperm are able to fertilize the egg. An indicator of normal functioning of Drosophila spermatozoa is the replacement of the somatic histones by sperm-specific arginine-rich nucleoproteins during spermiogenesis. The appearance of these arginine-rich nucleoproteins in the two kinds of sperm was investigated using the fluorescent dye sulfoflavine, which stains basic proteins at pH 8. In the spherical nuclei of early spermatids of Drosophila subobscura the somatic histones fluoresced strongly, but fluorescence could not be detected in later stages when the spermatid nuclei were elongating. After elongation, however, the nuclei of both kinds of sperm, long and short, fluoresced brightly again, due to the presence of sperm-specific arginine-rich nucleoproteins. Half of the cysts of both types contained spermatid nuclei with aberrant fluorescent pattern including 5–9% of both cyst types which do not undergo histone transition at all. These results indicate that both sperm types may be functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号