首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeIt is important to check stability of ionization chambers in between regular calibration cycles. Stability checks can include individual 60Co irradiations, use of a beta-emitting check source, or redundant measurements in megavoltage photon beams. While 60Co irradiators are considered stable, they are rarely found in the clinical setting. Thus, this study seeks to compare the precision and efficiency in monitoring chamber stability using 90Sr check sources and linear accelerator beams which are both commonly found in the clinical setting, and compare these sources to 60Co.MethodsMeasurements were made with a 90Sr beta-emitting check source and a 6 MV photon beam using a Constancy Check Phantom with three custom inserts to hold the ionization chambers. A comparison of both methods was performed with an Exradin A28 scanning chamber, Wellhofer IC69 Farmer-type chamber, and Exradin A12 Farmer-type chamber. Chamber stability was evaluated with individual charge readings and charge ratios among the three chambers. Results were compared to measurements taken in 60Co with three Farmer-type chambers: the NEL 2571, PTW N30001G, and Exradin A12.ResultsStability of individual charge reading was found to be within ±1.0% for 90Sr source measurements and ±0.5% for external beam measurements, including the 60Co comparison. Additionally, the standard deviation of the mean charge ratios ranged from 0.15% to 0.40% for 90Sr measurements and from 0.10% to 0.30% for the external beam measurements.ConclusionsThis work provides a comparison of techniques used to assess stability of ionization chambers in order to better inform the clinical physicist.  相似文献   

2.
BackgroundHigh-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear.AimThe aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers.Materials and methodsThe measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy.ResultsThe fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ~106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator.ConclusionThe thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from the simple capture reaction (n,γ) (from minutes to hours) are long enough to accumulate radioactivity of components of the accelerator head. The radiation emitted by induced radioisotopes causes the additional doses to staff operating the accelerators.  相似文献   

3.
The purpose of this study was to evaluate the suitability of the Daily QA 3 (Sun Nuclear Corporation, Melbourne, USA) device as a safe quality assurance device for control of machine specific parameters, such as linear accelerator output, beam quality and beam flatness and symmetry. Measurements were performed using three Varian 2300iX linear accelerators. The suitability of Daily QA 3 as a device for quality control of linear accelerator parameters was investigated for both 6 and 10 MV photons and 6, 9, 12, 15 and 18 MeV electrons. Measurements of machine specific using the Daily QA 3 device were compared to corresponding measurements using a simpler constancy meter, Farmer chamber and plane parallel ionisation chamber in a water tank. The Daily QA 3 device showed a linear dose response making it a suitable device for detection of output variations during routine measurements. It was noted that over estimations of variations compared with Farmer chamber readings were seen if the Daily QA 3 wasn’t calibrated for output and sensitivity on a regular eight to ten monthly basis. Temperature-pressure correction factors calculated by Daily QA 3 also contributed towards larger short term variations seen in output measurements. Energy, symmetry and flatness variations detected by Daily QA 3 were consistent with measurements performed in water tank using a parallel plate chamber. It was concluded that the Daily QA 3 device is suitable for routine daily and fortnightly quality assurance of linear accelerator beam parameters however a regular eight-ten monthly dose and detector array calibration will improve error detection capabilities of the device.  相似文献   

4.
AimExact knowledge of dosimetric parameters is an essential pre-requisite of an effective treatment in radiotherapy. In order to fulfill this consideration, different techniques have been used, one of which is Monte Carlo simulation.Materials and methodsThis study used the MCNP-4Cb to simulate electron beams from Neptun 10 PC medical linear accelerator. Output factors for 6, 8 and 10 MeV electrons applied to eleven different conventional fields were both measured and calculated.ResultsThe measurements were carried out by a Wellhofler-Scanditronix dose scanning system. Our findings revealed that output factors acquired by MCNP-4C simulation and the corresponding values obtained by direct measurements are in a very good agreement.ConclusionIn general, very good consistency of simulated and measured results is a good proof that the goal of this work has been accomplished.  相似文献   

5.
PurposeThis study performed the accurate measurements of beam profiles with a new rigid board, which was consistent with the supplied reference beam profiles (RBPs) for clinical Halcyon model.MethodsPercentage depth doses (PDDs), lateral and diagonal dose profiles were measured and compared with RBPs. A water tank was set on the rigid board bridged Halcyon bore without sagging and source-to-surface distance was 90.0 cm. Field sizes were from 2.0 to 28.0 cm squares and depths of lateral and diagonal dose profiles were 1.3, 5.0, 10.0, and 20.0 cm. For the PDD, the depth of maximum dose (dmax), PDD value at depth of 10.0 cm (PDD10), and absolute dose difference (DD) between RBP and measured beam profiles (MBP) were evaluated. For lateral and diagonal dose profiles, DDs for the whole and divided areas (central, shoulder, and extended areas) defined by third derivative, and distance-to-agreement (DTA) in the penumbra area were evaluated.ResultsFor PDDs, the differences of dmax and PDD10 and DD beyond the dmax were within 1.0 mm, 0.3%, and 1.0%, respectively. For lateral and diagonal dose profiles, the DDs reached approximately 5.0% in the whole area because of penumbra area, while the DDs in the central, shoulder, and extended areas were within 1.0%, 2.0%, and 1.0%, respectively. The DTAs in the penumbra area were within 0.8 mm.ConclusionsThe supplied RBPs can be used clinically owing to the good agreement with the accurate MBPs with rigid board.  相似文献   

6.
AimTo evaluate if a radiochromic film (RF) Gafchromic EBT3 is suitable for surface dose measurements of radiotherapy treatments performed with a 6 MV linear accelerator. Two aspects of RF were analyzed, beam energy dependence and surface dose determination.BackgroundThe measurements done at the surface or near the radiation source are done without charged electronic equilibrium and also have contribution of electron contamination. The detectors used for these measurements should not alter the dose to the target. To counteract these dosimetric problems it is proposed to do the measurements with radiochromic films which are thin detectors and have tissue equivalent properties.Materials and MethodsThe measurements were done using a Novalis linear accelerator (LINAC) with nominal energy of 6 MV. To determine the surface dose, the total scatter factors (TSF) of three different field sizes were measured in a water phantom at 5 cm depth. Energy dependence of EBT3 was studied at three different depths, using a solid water phantom. The surface measurements were done with the RF for the same field sizes of the TSF measurements. The value of the percentage depth dose was calculated normalizing the doses measured in the RF with the LINAC output, at 5 cm depth, and the TSF.ResultsThe radiochromic films showed almost energy independence, the differences between the curves are 1.7% and 1.8% for the 1.5 cm and 10 cm depth, respectively. The percentage depth doses values at the surface measured for the 10 cm × 10 cm, 5 cm × 5 cm and 1 cm × 1 cm were 26.1 ± 1.3%, 21.3 ± 2.4% and 20.2 ± 2.6%, respectively.ConclusionsThe RF-EBT3 seems to be a detector suitable for measurements of the dose at the surface. This suggests that RF-EBT3 films might be good candidates as detectors for in vivo dosimetry.  相似文献   

7.
PurposeTo estimate the concrete density of a newly constructed bunker using impact-echo testing prior to the installation of the linear accelerator.MethodsA newly constructed bunker showed visible honeycombing after the removal of the construction formwork. Impact-echo testing, which is based on the propagation and reflection of elastic waves in solids, was applied to confirm the bunker shielding integrity. A mechanical impact on the bunker wall generates a stress pulse, which propagates through the wall and is reflected or refracted by voids or changes in material characteristics such as density. Surface displacements caused by the reflected waves are recorded by a transducer, located near the impact point. The resulting displacement-time curves are analysed in the frequency domain for anomalies. The dominant frequencies are related to the depths from which stress waves are reflected within the structure. If the dynamic elastic modulus and Poisson ratio of the concrete are known, then the measured velocity of the so-called P-wave can be related to the concrete density.ResultsValidation measurements on a wall with known concrete density gave an estimate within 3% of the true density. Measured velocities on the honeycombed wall ranged from 3750 m/s to 4300 m/s, corresponding to densities of 2894 kg/m3 and 2201 kg/m3 respectively, with the majority of estimated densities ranging from 2307 kg/m3 to 2544 kg/m3.A radiation survey after the installation of the linear accelerator confirmed adequate shielding.ConclusionImpact-echo testing presents a viable solution to confirm bunker shielding integrity before the installation of a linac.  相似文献   

8.
Purpose/objectiveThe objective of this study was to verify the accuracy of treatment plans of stereotactic body radiation therapy (SBRT) and to verify the feasibility of the use of Monte Carlo (MC) as quality control (QC) on a daily basis.Material/methodsUsing EGSnrc, a MC model of Agility™ linear accelerator was created. Various measurements (Percentage depth dose (PDD), Profiles and Output factors) were done for different fields sizes from 1x1 up to 40x40 (cm2). An iterative model optimization was performed to achieve adequate parameters of MC simulation. 40 SBRT patient’s dosimetry plans were calculated by Monaco™ 3.1.1. CT images, RT-STRUCT and RT-PLAN files from Monaco™ being used as input for Moderato MC code. Finally, dose volume histogram (DVH) and paired t-tests for each contour were used for dosimetry comparison of the Monaco™ and MC.ResultsValidation of MC model was successful, as <2% difference comparing to measurements for all field’s sizes. The main energy of electron source incident on the target was 5.8 MeV, and the full width at half maximum (FWHM) of Gaussian electron source were 0.09 and 0.2 (cm) in X and Y directions, respectively. For 40 treatment plan comparisons, the minimum absolute difference of mean dose of planning treatment planning (PTV) was 0.1% while the maximum was 6.3%. The minimum absolute difference of Max dose of PTV was 0.2% while the maximum was 8.1%.ConclusionSBRT treatment plans of Monaco agreed with MC results. It possible to use MC for treatment plans verifications as independent QC tool.  相似文献   

9.
PurposeWe performed the first investigations, via measurements and Monte Carlo simulations on phantoms, of the feasibility of a new technique for synchrotron radiation rotational radiotherapy for breast cancer (SR3T).MethodsA Monte Carlo (MC) code based on Geant4 toolkit was developed in order to simulate the irradiation with the SR3T technique and to evaluate the skin sparing effect in terms of centre-to-periphery dose ratio at different energies in the range 60–175 keV. Preliminary measurements were performed at the Australian Synchrotron facility. Radial dose profiles in a 14-cm diameter polyethylene phantom were measured with a 100-mm pencil ionization chamber for different beam sizes and compared with the results of MC simulations. Finally, the dose painting feasibility was demonstrated with measurements with EBT3 radiochromic films in a phantom and collimating the SR beam at 1.5 cm in the horizontal direction.ResultsMC simulations showed that the SR3T technique assures a tumour-to-skin absorbed dose ratio from about 7:1 (at 60 keV photon energy) to about 10:1 (at 175 keV), sufficient for skin sparing during radiotherapy. The comparison between the results of MC simulations and measurements showed an agreement within 5%. Two off-centre foci were irradiated shifting the rotation centre in the horizontal direction.ConclusionsThe SR3T technique permits to obtain different dose distributions in the target with multiple rotations and can be guided via synchrotron radiation breast computed tomography imaging, in propagation based phase-contrast conditions. Use of contrast agents like iodinated solutions or gold nanoparticles for dose enhancement (DE-SR3T) is foreseen and will be investigated in future work.  相似文献   

10.
PurposeThis study provides methodology of calibrating as well as controlling the output for an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) colorimetric assay irradiated in a low energy proton beam using EBT3-model GAFCHROMICTM film, without correcting for quenching effect.MethodsA calibrated Markus ionization chamber was used to measure the depth dose and beam output for 26.5 MeV protons produced by a CS30 cyclotron. A time-controlled aluminum cylinder was added in front of the horizontal beam-exit serving as a radiation shutter. Following the TRS-398 reference dosimetry protocol for proton beams, the output was calibrated in water at a reference depth of 3 mm. EBT3 film was calibrated for doses up to 8 Gy at the same depth. To verify the dose distribution for each 96-well MTT assay plate, EBT3 film was placed at the reference depth during irradiation and cell doses were scaled by measured percent depth dose (PDD) data.ResultsThe radiochromic film dosimetry system in this study provides dose measurements with an uncertainty better than 3.3% for doses higher than 1 Gy. From a single exposure and utilizing the Gaussian shape of the beam, multiple dose points can be obtained within different wells of the same plate ranging from 6.9 Gy (sigma ∼4%) in the central well, and 2 Gy (sigma ∼8%) for wells positioned closer to the periphery.ConclusionsWe described a methodology for radiochromic film-based dose monitoring system, using low-energy protons, which can be used for the MTT assay in any proton beam, except within Bragg peak region.  相似文献   

11.
12.
PurposeMonte Carlo (MC) commissioning of medical linear accelerator (LINAC) is a time-consuming process involving a comparison between measured and simulated cross beam/lateral profiles and percentage depth doses (PDDs) for various field sizes. An agreement between these two data sets is sought by trial and error method while varying the incident electron beam parameters, such as electron beam energy or width, etc. This study aims to improve the efficiency of MC commissioning of a LINAC by assessing the feasibility of using a limited number of simulated PDDs.Materials and methodsUsing EGSnrc codes, a Varian Clinac 2100 unit has been commissioned for 6 MV photon beam, and a methodology has been proposed to identify the incident electron beam parameters in a speedier fashion. Impact of voxel size in 3-dimensions and cost functions used for comparison of the measured and simulated data have been investigated along with the role of interpolation.ResultsA voxel size of 1 × 1×0.5 cm3 has been identified as suitable for accurate and fast commissioning of the LIANC. The optimum number of simulated PDDs (required for further interpolation) has been found to be five.ConclusionThe present study suggests that PDDs alone at times can be insufficient for an unambiguous commissioning process and should be supported by including the lateral beam profiles in the process.  相似文献   

13.
14.
AimThe purpose of this report is to store the information of the pre-planning and compare this data with the actual data of the procedure.BackgroundCurrently, intraoperative electron beam radiotherapy clinical practice lacks a treatment planning system.Materials and methodsThe RADIANCE concept approaches treatment planning by providing the user with a navigation platform based on a three-dimensional imaging system in which the radiation oncologist can target the tumor and risk areas in different sections (axial, coronal, sagittal), while a volume rendering engine displays a 3D image that is automatically updated as we make any changes of the space. Finally, the user may select the parameters of the applicator, energy and dose of treatment to optimize the procedure. Six cases are clinically described and illustrated.ResultsRADIANCE is a useful tool in planning IOERT. Tumor segmentation and risk areas with minimal guide in the selection of parameters for the applicator. Complex locations are challenging, where the experience and skill of the radiation oncologist is necessary to optimize the process. New developments include imaging innovated uses. Intraoperative imaging will approach reality and allow real time, dosimetry estimations, stereotactic recognition of patient and tumor bed position, will guide automatization of radiation beam recognition and pre-robotic arrangements with linear accelerator movements.ConclusionsRADIANCE offers a new imaging expansion for IOERT, in the context of a multidisciplinary approach to optimize and define the treatment parameters to approximate the actual treatment radiotherapy procedure.  相似文献   

15.
BackgroundIn radiation therapy, the peripheral dose (PD) – the dose outside the geometric boundaries of the radiation field – is of clinical importance. A metal oxide semiconductor field effect transistor (MOSFET) detector is used to estimate the peripheral dose.AimThe aim of this study is to investigate the ability of a MOSFET dosimetry system to accurately measure doses in peripheral regions of high energy X-ray beams.Materials & MethodsThe accuracy of the MOSFET system is evaluated by comparing peripheral region dose measurement with the results of standard ionization chamber measurements. Furthermore, the measurement of PD using a MOSFET detector helps us to keep the tolerance dose of any critical organ closer to the treatment field within the acceptable limits. The measurements were carried out using a 0.6 cc Farmer type ionization chamber and MOSFET 20 dosimetry system for field sizes ranging from 5 × 5 cm2 to 20 × 20 cm2 at three depths of 1.5 cm, 5 cm and 10 cm in a blue water phantom. PD were measured at distances varying from 1 cm to 30 cm from the field edges along the x axis for the open fields, with collimator rotation and with beam modifiers like 15 degree, 30 degree and 45 degree wedges.ResultsThe results show a good agreement of measured dose by both methods for various field sizes, collimator rotation and wedges.ConclusionThe MOSFET detector has a compact construction, provides instant readout, is of minimal weight and can be used on any surface.  相似文献   

16.
PurposeThe aim of the study was a multicenter evaluation of MLC&jaws-defined small field output factors (OF) for different linear accelerator manufacturers and for different beam energies using the latest synthetic single crystal diamond detector commercially available. The feasibility of providing an experimental OF data set, useful for on-site measurements validation, was also evaluated.MethodsThis work was performed in the framework of the Italian Association of Medical Physics (AIFM) SBRT working group. The project was subdivided in two phases: in the first phase each center measured OFs using their own routine detector for nominal field sizes ranging from 10 × 10 cm2 to 0.6 × 0.6 cm2. In the second phase, the measurements were repeated in all centers using the PTW 60019 microDiamond detector.ResultsThe project enrolled 30 Italian centers. Micro-ion chambers and silicon diodes were used for OF measurements in 24 and 6 centers respectively. Gafchromic films and TLDs were used for very small field OFs in 3 and 1 centers. Regarding the measurements performed with the user’s detectors, OF standard deviations (SD) for field sizes down to 2 × 2 cm2 were in all cases <2.7%. In the second phase, a reduction of around 50% of the SD was obtained using the microDiamond detector.ConclusionsThe measured values presented in this multicenter study provide a consistent dataset for OFs that could be a useful tool for improving dosimetric procedures in centers. The microDiamond data present a small variation among the centers confirming that this detector can contribute to improve overall accuracy in radiotherapy.  相似文献   

17.

Aim

The RapidArc commissioning and Acceptance Testing program will test and ensure accuracy in DMLC position, precise dose-rate control during gantry rotation and accurate control of gantry speed.

Background

Recently, we have upgraded our linear accelerator capable of performing IMRT which was functional from 2007 with image guided RapidArc facility. The installation of VMAT in the existing linear accelerator is a tedious process which requires many quality assurance procedures before the proper commissioning of the facility and these procedures are discussed in this study.

Materials and methods

Output of the machine at different dose rates was measured to verify its consistency at different dose rates. Monitor and chamber linearity at different dose rates were checked. DMLC QA comprising of MLC transmission factor measurement and dosimetric leaf gap measurements were performed using 0.13 cm3 and 0.65 cm3 Farmer type ionization chamber, dose 1 dosimeter, and IAEA 30 cm × 30 cm × 30 cm water phantom. Picket fence test, garden fence test, tests to check leaf positioning accuracy due to carriage movement, calibration of the leaves, leaf speed stability effects due to the acceleration and deceleration of leaves, accuracy and calibration of leaves in producing complex fields, effects of interleaf friction, etc. were verified using EDR2 therapy films, Vidar scanner, Omnipro accept software, amorphous silicon based electronic portal imaging device and EPIQA software.1–8

Results

All the DMLC related quality assurance tests were performed and evaluated by film dosimetry, portal dosimetry and EPIQA.7

Conclusion

Results confirmed that the linear accelerator is capable of performing accurate VMAT.  相似文献   

18.
PurposeThis study aimed to characterize the radiation exposure to patients and workers in a new vascular hybrid operating room during X-ray-guided procedures.MethodsDuring one year, data from 260 interventions performed in a hybrid operating room equipped with a Siemens Artis Zeego angiography system were monitored. The patient doses were analysed using the following parameters: radiation time, kerma-area product, patient entrance reference point dose and peak skin dose. Staff radiation exposure and ambient dose equivalent were also measured using direct reading dosimeters and thermoluminescent dosimeters.ResultsThe radiation time, kerma-area product, patient entrance reference point dose and peak skin dose were, on average, 19:15 min, 67 Gy·cm2, 0.41 Gy and 0.23 Gy, respectively. Although the contribution of the acquisition mode was smaller than 5% in terms of the radiation time, this mode accounted for more than 60% of the effective dose per patient. All of the worker dose measurements remained below the limits established by law.ConclusionsThe working conditions in the hybrid operating room HOR are safe in terms of patient and staff radiation protection. Nevertheless, doses are highly dependent on the workload; thus, further research is necessary to evaluate any possible radiological deviation of the daily working conditions in the HOR.  相似文献   

19.
AimThe aim of this work was to develop multiple-source models for electron beams of the NEPTUN 10PC medical linear accelerator using the BEAMDP computer code.BackgroundOne of the most accurate techniques of radiotherapy dose calculation is the Monte Carlo (MC) simulation of radiation transport, which requires detailed information of the beam in the form of a phase-space file. The computing time required to simulate the beam data and obtain phase-space files from a clinical accelerator is significant. Calculation of dose distributions using multiple-source models is an alternative method to phase-space data as direct input to the dose calculation system.Materials and methodsMonte Carlo simulation of accelerator head was done in which a record was kept of the particle phase-space regarding the details of the particle history. Multiple-source models were built from the phase-space files of Monte Carlo simulations. These simplified beam models were used to generate Monte Carlo dose calculations and to compare those calculations with phase-space data for electron beams.ResultsComparison of the measured and calculated dose distributions using the phase-space files and multiple-source models for three electron beam energies showed that the measured and calculated values match well each other throughout the curves.ConclusionIt was found that dose distributions calculated using both the multiple-source models and the phase-space data agree within 1.3%, demonstrating that the models can be used for dosimetry research purposes and dose calculations in radiotherapy.  相似文献   

20.
PurposeMonte Carlo study of radiation transmission around areas surrounding a PET room.MethodsAn extended population of patients administered with 18F-FDG for PET-CT investigations was studied, collecting air kerma rate and gamma ray spectra measurements at a reference distance. An MC model of the diagnostic room was developed, including the scanner and walls with variable material and thickness. MC simulations were carried out with the widely used code GEANT4.ResultsThe model was validated by comparing simulated radiation dose values and gamma ray spectra produced by a volumetric source with experimental measurements; ambient doses in the surrounding areas were assessed for different combinations of wall materials and shielding and compared with analytical calculations, based on the AAPM Report 108.In the range 1.5–3.0 times of the product between the linear attenuation coefficient and thickness of an absorber (μ x), it was observed that the effectiveness of different combinations of shielding is roughly equivalent. An extensive tabulation of results is given in the text.ConclusionsThe validation tests performed showed a satisfactory agreement between the simulated and expected results. The simulated dose rates incident on, and transmitted by the walls in our model of PET scanner room, are generally in good agreement with analytical estimates performed using the AAPM Publication No. 108 method. This provides an independent confirmation of AAPM's approach. Even in this specific field of application, GEANT4 proved to be a relevant and accurate tool for dosimetry estimates, shielding evaluation and for general radiation protection use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号