首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new halotolerant Desulfovibrio, strain CVLT (T = type strain), was isolated from a solar saltern in California. The curved, gram-negative, nonsporeforming cells (0.3 × 1.0–1.3 μm) occurred singly, in pairs, or in chains, were motile by a single polar flagellum and tolerated up to 12.5% NaCl. Strain CVLT had a generation time of 60 min when grown in lactate-yeast extract medium under optimal conditions (37°C, pH 7.6, 2.5% NaCl). It used lactate, pyruvate, cysteine, or H2/CO2 + acetate as electron donors, and sulfate, sulfite, thiosulfate, or fumarate as electron acceptors. Elemental sulfur, nitrate, or oxygen were not used. Sulfite and thiosulfate were disproportionated to sulfate and sulfide. The G+C content of the DNA was 62 mol%. Phylogenetic analysis revealed that Desulfovibrio fructosovorans was the nearest relative. Strain CVLT is clearly different from other Desulfovibrio species, and is designated Desulfovibrio senezii sp. nov. (DSM 8436). Received: 27 February 1998 / Accepted: 15 June 1998  相似文献   

2.
Two deltaproteobacterial sulfate reducers, designated strain I.8.1T and I.9.1T, were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20°C at pH 7.0–8.0 and at 2.5–3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C3–4 fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-ω9c (18%) for strain I.8.1T and iso-17:0-ω9c (14%) for strain I.9.1T. The G+C contents of their genomic DNA were 45–46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141T and Desulfovibrio marinisediminis JCM 14577T represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98–99%. The level of DNA-DNA hybridization between strains I.8.1T and I.9.1T was 30–38%. The two strains shared 10–26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1T and I.9.1T represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1T = DSM 21390T = JCM 15970T) and D. oceani subsp. galateae (type strain, I.9.1T = DSM 21391T = JCM 15971T).  相似文献   

3.
A new moderately halophilic sulfate-reducing bacterium (strain H1T) was enriched and isolated from a wastewater digestor in Tunisia. Cells were curved, motile rods (2–3 x 0.5 μm). Strain H1T grew at temperatures between 22 and 43°C (optimum 35°C), and at pH between 5.0 and 9.2 (optimum 7.3–7.5). Strain H1T required salt for growth (1–45 g of NaCl/l), with an optimum at 20–30 g/l. Sulfate, sulfite, thiosulfate, and elemental sulfur were used as terminal electron acceptors but not nitrate and nitrite. Strain H1T utilized lactate, pyruvate, succinate, fumarate, ethanol, and hydrogen (in the presence of acetate and CO2) as electron donors in the presence of sulfate as electron acceptor. The main end-products from lactate oxidation were acetate with H2 and CO2. The G + C content of the genomic DNA was 55%. The predominant fatty acids of strain H1T were C15:0 iso (38.8%), C16:0 (19%), and C14:0 iso 3OH (12.2%), and menaquinone MK-6 was the major respiratory quinone. Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain H1T was affiliated to the genus Desulfovibrio. On the basis of SSU rRNA gene sequence comparisons and physiological characteristics, strain H1T is proposed to be assigned to a novel species of sulfate reducers of the genus Desulfovibrio, Desulfovibrio legallis sp. nov. (= DSM 19129T = CCUG 54389T).  相似文献   

4.
A novel, strictly anaerobic, moderately thermophilic, endospore-forming, sulfate-reducing bacterium, designated TGB60-1T, was isolated from a hydrothermal sediment vent collected from the Tofua Arc in the Tonga Trench. The strain was characterized phenotypically and phylogenetically. The isolated strain was observed to be Gram-positive, with slightly curved rod-shaped cells and a polar flagellum. Strain TGB60-1T was found to grow anaerobically at 37–60 °C (optimum, 50 °C), at pH 6.0–8.5 (optimum, pH 7.0) and with 1.0–4.0 % (w/v) NaCl (optimum, 3.0 %). The electron acceptors utilised were determined to be sulfate, sulfite, and thiosulfate. Strain TGB60-1T was found to utilise pyruvate and H2 as electron donors. Strain TGB60-1T was determined to be related to representatives of the genus Desulfotomaculum and the closest relatives within this genus were identified as Desulfotomaculum halophilum SEBR 3139T, Desulfotomaculum alkaliphilum S1T and Desulfotomaculum peckii LINDBHT1T (92.7, 92.1, and 91.8 % 16S rRNA gene sequence similarity, respectively). The major fatty acids (>20 %) were identified as C16:0 and C18:1 ω7c. The G+C content of the genomic DNA of this novel bacterium was determined to be 53.9 mol%. Based on this polyphasic taxonomic study, strain TGB60-1T is considered to represent a novel species in the genus Desulfotomaculum, for which the name Desulfotomaculum tongense sp. nov. is proposed. The type strain of D. tongense is strain TGB60-1T (= KTCT 4534T = JCM 18733T).  相似文献   

5.
An anaerobic enrichment with pyruvate as electron donor and thiosulfate at pH 10 and 0.6 M Na+ inoculated with pasteurized soda lake sediments resulted in a sulfidogenic coculture of two morphotypes of obligately anaerobic haloalkaliphilic endospore-forming clostridia, which were further isolated in pure culture. Strain AHT16 was a thin long rod able to ferment sugars and pyruvate and to respire H2, formate and pyruvate using thiosulfate and fumarate as electron acceptors and growing optimally at pH 9.5. Thiosulfate was reduced incompletely to sulfide and sulfite. The strain was closely related (99% sequence similarity) to a peptolytic alkaliphilic clostridium Natronincola peptidovorans. Strain AHT17 was a short rod with a restricted respiratory metabolism, growing with pyruvate and lactate as electron donor and sulfite, thiosulfate and elemental sulfur as electron acceptors with a pH optimum 9.5. Thiosulfate was reduced completely via sulfite to sulfide. The ability of AHT17 to use sulfite explained the stability of the original coculture of the two clostridia—one member forming sulfite from thiosulfate and another consuming it. Strain AHT17 formed an independent deep phylogenetic lineage within the Clostridiales and is proposed as a new genus and species Desulfitisporum alkaliphilum gen. nov., sp. nov. (=DSM 22410T = UNIQEM U794T).  相似文献   

6.
Strain SF3, a gram-negative, anaerobic, motile, short curved rod that grows by coupling the reductive dechlorination of 2-chlorophenol (2-CP) to the oxidation of acetate, was isolated from San Francisco Bay sediment. Strain SF3 grew at concentrations of NaCl ranging from 0.16 to 2.5%, but concentrations of KCl above 0.32% inhibited growth. The isolate used acetate, fumarate, lactate, propionate, pyruvate, alanine, and ethanol as electron donors for growth coupled to reductive dechlorination. Among the halogenated aromatic compounds tested, only the ortho position of chlorophenols was reductively dechlorinated, and additional chlorines at other positions blocked ortho dechlorination. Sulfate, sulfite, thiosulfate, and nitrate were also used as electron acceptors for growth. The optimal temperature for growth was 30°C, and no growth or dechlorination activity was observed at 37°C. Growth by reductive dechlorination was revealed by a growth yield of about 1 g of protein per mol of 2-CP dechlorinated, and about 2.7 g of protein per mole of 2,6-dichlorophenol dechlorinated. The physiological features and 16S ribosomal DNA sequence suggest that the organism is a novel species of the genus Desulfovibrio and which we have designated Desulfovibrio dechloracetivorans. The unusual physiological feature of this strain is that it uses acetate as an electron donor and carbon source for growth with 2-CP but not with sulfate.  相似文献   

7.
A new Desulfovibrio strain ThAc01 was isolated from freshwater mud; the strain conserved energy for growth under strictly anaerobic conditions by disproportionation of thiosulfate or sulfite to sulfate and sulfide according to the following reactions: $$\begin{gathered} S_2 O_3^{2 - } + H_2 O \to SO_4^{2 - } + HS^ - + H^ + \hfill \\ 4SO_3^{2 - } + H^ + {\text{ }} \to 3SO_4^{2 - } + HS^ - \hfill \\ \end{gathered}$$ Strain ThAc01 required acetate as a carbon source, but was unable to utilize acetate as an oxidizable energy source. In a defined medium with acetate and bicarbonate as carbon sources, the growth yields per mol of substrate disproportionated were 2.1 g or 3.2 g dry cell mass on thiosulfate or sulfite, respectively. Strain ThAc01 was also able to grow by dissimilatory sulfate reduction with lactate, ethanol, propanol, or butanol as electron donors and carbon sources which were incompletely oxidized to the corresponding fatty acids. However, growth by sulfate reduction was slower than by disproportionation. Elemental sulfur, nitrate, fumarate, or malate did not serve as electron acceptors. Strain ThAc01 contained desulfoviridin and cytochromes; it required panthothenate and biotin as growth factors and had a DNA base ratio of 64.1 mol% G+C. Disproportionating bacteria similar to strain ThAc01 were enriched with either thiosulfate or sulfite from various freshwater, brackish or marine mud samples. Most probable number enumeration indicated that 2×106 thiosulfate-disproportionating bacteria were present per ml freshwater mud. Of various other sulfate-reducing bacteria tested, only Desulfobacter curvatus (strain AcRM3) was able to disproportionate thiosulfate or sulfite. Desulfovibrio vulgaris (strain Marburg) slowly disproportionated sulfite, but effected only a slight increase in cell density. Strain ThAc01 is proposed as the type strain of a new species, Desulfovibrio sulfodismutans.  相似文献   

8.
In an investigation on the oxygen tolerance of sulfate-reducing bacteria, a strain was isolated from a 107-fold dilution of the upper 3-mm layer of a hypersaline cyanobacterial mat (transferred from Solar Lake, Sinai). The isolate, designated P1B, appeared to be well-adapted to the varying concentrations of oxygen and sulfide that occur in this environment. In the presence of oxygen strain P1B respired aerobically with the highest rates [260 nmol O2 min–1 (mg protein)–1] found so far among marine sulfate-reducing bacteria. Besides H2 and lactate, even sulfide or sulfite could be oxidized with oxygen. The sulfur compounds were completely oxidized to sulfate. Under anoxic conditions, it grew with sulfate, sulfite, or thiosulfate as the electron acceptor using H2, lactate, pyruvate, ethanol, propanol, or butanol as the electron donor. Furthermore, in the absence of electron donors the isolate grew by disproportionation of sulfite or thiosulfate to sulfate and sulfide. The highest respiration rates with oxygen were obtained with H2 at low oxygen concentrations. Aerobic growth of homogeneous suspensions was not obtained. Additions of 1% oxygen to the gas phase of a continuous culture resulted in the formation of cell clumps wherein the cells remained viable for at least 200 h. It is concluded that strain P1B is oxygen-tolerant but does not carry out sulfate reduction in the presence of oxygen under the conditions tested. Analysis of the 16S rDNA sequence indicated that strain P1B belongs to the genus Desulfovibrio, with Desulfovibrio halophilus as its closest relative. Based on physiological properties strain P1B could not be assigned to this species. Therefore, a new species, Desulfovibrio oxyclinae, is proposed. Received: 7 August 1996 / Accepted: 29 January 1997  相似文献   

9.
A sulfate-reducing bacterium, designated strain ESC1, was isolated and found to be a new species. Strain ESC1 is a strictly anaerobic, gram-negative, non-sporeforming, motile, short, round-ended rod often occurring in pairs. Of 31 fermentative substrates tested, only pyruvate was utilized. Sulfate enhanced growth with pyruvate and allowed growth with ethanol, lactate, formate and hydrogen. Both sulfate and thiosulfate were reduced. Lactate was incompletely oxidized to acetate and CO2. The strain was desulfoviridin negative. The G+C content is 59.9%. These data suggested placement of strain ESC1 in the genus Desulfomicrobium. Comparative 16S rRNA analysis showed that strain ESC1 shares 98% rRNA sequence similarity with Desulfomicrobium baculatum and Desulfovibrio desulfuricans strain Norway 4. The latter two strains shared greater than 99% 16S rRNA sequence similarity. Strain ESC1 has been designated as the new species Desulfomicrobium escambium. We also recommend that D. desulfuricans strain Norway 4 be considered for reclassification as a Desulfomicrobium species.  相似文献   

10.
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov.  相似文献   

11.
A novel facultative microaerophilic nitrate-reducing bacterium designated CA62NT was isolated from a thermal spring in France. Cells were non-motile rods (2–3 × 0.2 μm) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62NT grew at temperatures between 50 and 75°C (optimum 65°C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl−1. Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62NT used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO2, and traces of H2. The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62NT was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and “S. toebii” as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62NT is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183).  相似文献   

12.
From anoxic intertidal sediment, a dimethylsulfoniopropionate (DMSP)-cleaving anaerobe (strain W218) was isolated that reduced the acrylate formed to propionate. The bacterium was vibrio- to rod-shaped and motile by means of multiple polar flagella. It reduced sulfate, thiosulfate, and acrylate, and used lactate, fumarate, succinate, malate, pyruvate, ethanol, propanol, glycerol, glycine, serine, alanine, cysteine, hydrogen, and formate as electron donors. Sulfate and acrylate were reduced simultaneously; growth with sulfate was faster than with acrylate. Extracts of cells grown in the presence of DMSP contained high DMSP lyase activities (9.8 U/mg protein). The DNA mol% G+C was 45.1. On the basis of its characteristics and the 16S rRNA gene sequence, strain W218 was assigned to a new Desulfovibrio species for which the name Desulfovibrio acrylicus is proposed. A variety of other sulfate-reducing bacteria (eight of them originating from a marine or saline environment and five from other environments) did not reduce acrylate. Received: 22 March 1996 / Accepted: 8 May 1996  相似文献   

13.
Strain SBT is a new, strictly anaerobic, gram-negative, nonmotile, non-sporeforming, rod-shaped bacterium that degrades benzoate and certain fatty acids in syntrophic association with hydrogen/formate-using microorganisms. Strain SBT produced approximately 3 mol of acetate and 0.6 mol of methane per mol of benzoate in coculture with Methanospirillum hungatei strain JF1. Saturated fatty acids, some unsaturated fatty acids, and methyl esters of butyrate and hexanoate also supported growth of strain SBT in coculture with Desulfovibrio strain G11. Strain SBT grew in pure culture with crotonate, producing acetate, butyrate, caproate, and hydrogen. The molar growth yield was 17 ± 1 g cell dry mass per mol of crotonate. Strain SBT did not grow with fumarate, iron(III), polysulfide, or oxyanions of sulfur or nitrogen as electron acceptors with benzoate as the electron donor. The DNA base composition of strain SBT was 43.1 mol% G+C. Analysis of the 16 S rRNA gene sequence placed strain SBT in the δ-subdivision of the Proteobacteria, with sulfate-reducing bacteria. Strain SBT was most closely related to members of the genus Syntrophus. The clear phenotypic and genotypic differences between strain SBT and the two described species in the genus Syntrophus justify the formation of a new species, Syntrophus aciditrophicus. Received: 2 June 1998 / Accepted: 16 November 1998  相似文献   

14.
A novel strictly anaerobic bacterium designated SPDX02-08T was isolated from a deep terrestrial geothermal spring located in southwest France. Cells (1–2 × 2–6 μm) were non-motile, non sporulating and stained Gram negative. Strain SPDX02-08T grew at a temperature between 40 and 60°C (optimum 55°C), pH between 6.3 and 7.3 (optimum 7.2) and a NaCl concentration between 0 and 5 g/l (optimum 2 g/l). Sulfate, thiosulfate and sulfite were used as terminal electron acceptors, but not elemental sulfur, nitrate, nitrite, Fe (III) or fumarate. In the presence of sulfate, strain SPDX02-08T completely oxidized pyruvate, propionate, butyrate, isobutyrate, valerate, isovalerate and hexadecanoate. Stoichiometric measurements revealed a complete oxidation of part of lactate (0.125 mol of acetate produced per mole lactate oxidized). Strain SPDX02-08T required yeast extract to oxidize formate and H2 but did not grow autotrophically on H2. Among the substrates tested, only pyruvate was fermented. The G+C content of the genomic DNA was 57.6 mol%. Major cellular fatty acids of strain SPDX02-08T were iso-C15:0, C15:0, and C16:0. Phylogenetic analysis of the 16S small-subunit (SSU) ribosomal RNA gene sequence indicated that strain SPDX02-08T belongs to the genus Desulfosoma, family Syntrophobacteraceae, having Desulfosoma caldarium as its closest phylogenetic relative (97.6% similarity). The mean DNA/DNA reassociation value between strain SPDX02-08T and Desulfosoma caldarium was 16.9 ± 2.7%. Based on the polyphasic differences, strain SPDX02-08T is proposed to be assigned as a new species of the genus Desulfosoma, Desulfosoma profundi sp. nov. (DSM 22937T = JCM 16410T). GenBank accession number for the 16S rRNA gene sequence of strain SPDX02-08T is HM056226.  相似文献   

15.
A novel moderately thermophilic bacterium, strain STGHT, was isolated from Severo-Stavropolskoye underground gas storage (Russia). Cells of strain STGHT were spore-forming motile straight rods 0.3 μm in diameter and 2.0–4.0 μm in length having a Gram-positive cell wall structure. The temperature range for growth was 36–65 °C, with an optimum at 50–52 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0–7.5. Growth of strain STGHT was observed at NaCl concentrations ranging from 0 to 4.0 % (w/v) with an optimum at 1.0 % (w/v). Strain STGHT grew anaerobically by reduction of nitrate, thiosulfate, S0 and AQDS using a number of complex proteinaceous compounds, organic acids and carbohydrates as electron donors. Nitrate was reduced to nitrite; thiosulfate and sulfur were reduced to sulfide. It also was able to ferment pyruvate, glucose, fructose, and maltose. The strain STGHT did not grow under aerobic conditions during incubation with atmospheric concentration of oxygen but was able to microaerobic growth (up to 10 % of oxygen in gas phase). The G+C content of DNA of strain STGHT was 34.8 mol%. 16S rRNA gene sequence analysis revealed that the isolated organism belongs to the class Bacilli. We propose to assign strain STGHT to a new species of a novel genus Tepidibacillus fermentans gen. nov., sp.nov. The type strain is STGHT (=DSM 23802T, =VKM B-2671T).  相似文献   

16.
A thermophilic, anaerobic, chemolithoautotrophic bacterium (strain SU872T) was isolated from a shallow-sea hydrothermal vent at Kunashir Island. The cells were motile, gram-negative, oval or rodshaped 0.5?0.6 μm thick and 1.5?2.0 μm long, occurring singly or in pairs. Strain SU872T grew at 50 to 79°C (optimum at 74°C), pH from 5.0 to 8.0 (optimum at 6.7?7.0), and NaCl concentration of 1.5–4.5%. Strain SU872T was able to grow by disproportionation of elemental sulfur, thiosulfate, or sulfite, with CO2/HCO3? as the sole carbon source. Growth was enhanced in the presence of ferrihydrite (poorly crystalline Fe(III) oxide) as as a sulfide-scavenging agent. Sulfate was not used as an electron acceptor. Growth also occurred with elemental sulfur, thiosulfate, or sulfite (but not sulfide) as electron donors and nitrate as an electron acceptor, with production of sulfate and ammonium. Analysis of the 16S rRNA gene sequence revealed 97.8% similarity between strain SU872T and the type strain Thermosulfurimonas dismutans S95T (phylum Thermodesulfobacteria). According to the results of DNA–DNA hybridization, the similarity of genomic DNA of the strains SU872T and T. dismutans S95T was 48%. Based on its phenotypic characteristics and the results of phylogenetic analysis, it is proposed to assign the isolate to a new species of the genus Thermosulfurimonas,—Thermosulfurimonas marina sp. nov., with the type strain SU872T (=DSM 104922T, =VKM B-3177T, =UNIQEM SU872T).  相似文献   

17.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4–0.6 by 0.6–1.8 m), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65°C (with an optimum at 60°C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2+ CO2(autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G+C content of DNA is 60.8 mol %. The level of DNA–DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum(strain BG1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101Tin the phylogenetic cluster of the Desulfacinumspecies within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneumsp. nov., with strain 101 as the type strain.  相似文献   

18.
A Gram-negative, facultatively anaerobic, non-motile and rod-shaped bacterial strain, designated SMK1-12T, was isolated from a tidal flat sediment on the western coast of Korea. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences showed that strain SMK1-12T belonged to the genus Shewanella, clustering with the type strain of Shewanella amazonensis. Strain SMK1-12T exhibited the highest 16S rRNA gene sequence similarity value (97.0 %) and the highest gyrB sequence similarity value (87.8 %) to S. amazonensis SB2BT, respectively. Strain SMK1-12T contained simultaneously both menaquinones and ubiquinones; the predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The major fatty acids (>10 % of the total fatty acids) detected in strain SMK1-12T were the MIDI system summed feature 3 (iso-C15:0 2-OH and/or C16:1 ω7c), iso-C15:0, C17:1 ω8c and C16:0. The DNA G+C content of strain SMK1-12T was 58.0 mol% and its mean DNA–DNA relatedness value with S. amazonensis ATCC 700329T was 15 ± 4.6 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SMK1-12T is distinguishable from recognized Shewanella species. On the basis of the data presented, strain SMK1-12T is considered to represent a novel Shewanella species, for which the name Shewanella litorisediminis sp. nov. is proposed. The type strain is SMK1-12T (=KCTC 23961T = CCUG 62411T).  相似文献   

19.
Desulfovibrio strain JJ isolated from estuarine sediment differed from all other described Desulfovibrio species by the ability to degrade fructose. The oxidation was incomplete, leading to acetate production. Fructose, malate and fumarate were fermented mainly to succinate and acetate in the absence of an external electron acceptor. The pH and temperature optima for growth were 7.0 and 35° C respectively. Strain JJ was motile by means of a single polar flagellum. The DNA base composition was 64.13% G+C. Cytochrome c 3 and desulfoviridin were present. These characteristics established the isolate as a new species of the genus Desulfovibrio, and the name Desulfovibrio fructosovorans is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号