首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
3.
4.
We show that aerial tips are self‐similar fractals of whole shrubs and present a field method that applies this fact to improves accuracy and precision of biomass estimates of tall‐shrubs, defined here as those with diameter at root collar (DRC) ≥ 2.5 cm. Power function allometry of biomass to stem diameter generates a disproportionate prediction error that increases rapidly with diameter. Thus, biomass should be modeled as a single measure of stem diameter only if stem diameter is less than a threshold Dmax. When stem diameter exceeds Dmax, then the stem internode should be treated as a conic frustrum requiring two additional measures: a second, node‐adjacent diameter and a length. If the second diameter is less than Dmax, then the power function allometry can be applied to the aerial tip; otherwise an additional internode is measured. This “two‐component” allometry—internodes as frustra and aerial tips as shrubs—can reduce estimated biomass error propagated to the plot‐level by as much as 50% or more where very large shrubs are present Dmax is any diameter such that the ratio of single‐component to two‐component uncertainty exceeds the ratio of two‐component to single‐component measurement time. Guidelines for estimating Dmax based on pilot field data are provided. Tall shrubs are increasing in abundance and distribution across Arctic, alpine, boreal, and dryland ecosystems. Estimating their biomass is important for both ecological studies and carbon accounting. Reducing field‐sample prediction error increases precision in multi‐stage modeling because additional measures efficiently improve plot‐level biomass precision, reducing uncertainty for shrub biomass estimates.  相似文献   

5.
6.
Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single‐molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward‐ to the inward‐facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high‐energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain‐of‐function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward‐facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.  相似文献   

7.
The COVID‐19 pandemic caused by SARS‐CoV‐2 has applied significant pressure on overtaxed healthcare around the world, underscoring the urgent need for rapid diagnosis and treatment. We have developed a bacterial strategy for the expression and purification of a SARS‐CoV‐2 spike protein receptor binding domain (RBD) that includes the SD1 domain. Bacterial cytoplasm is a reductive environment, which is problematic when the recombinant protein of interest requires complicated folding and/or processing. The use of the CyDisCo system (cytoplasmic disulfide bond formation in E. coli) bypasses this issue by pre‐expressing a sulfhydryl oxidase and a disulfide isomerase, allowing the recombinant protein to be correctly folded with disulfide bonds for protein integrity and functionality. We show that it is possible to quickly and inexpensively produce an active RBD in bacteria that is capable of recognizing and binding to the ACE2 (angiotensin‐converting enzyme) receptor as well as antibodies in COVID‐19 patient sera.  相似文献   

8.
The implementation of single‐use technologies offers several major advantages, e.g. prevention of cross‐contamination, especially when spore‐forming microorganisms are present. This study investigated the application of a single‐use bioreactor in batch fermentation of filamentous fungus Penicillium sp. (IBWF 040‐09) from the Institute of Biotechnology and Drug Research (IBWF), which is capable of intracellular production of a protease inhibitor against parasitic proteases as a secondary metabolite. Several modifications to the SU bioreactor were suggested in this study to allow the fermentation in which the fungus forms pellets. Simultaneously, fermentations in conventional glass bioreactor were also conducted as reference. Although there are significant differences in the construction material and gassing system, the similarity of the two types of bioreactors in terms of fungal metabolic activity and the reproducibility of fermentations could be demonstrated using statistic methods. Under the selected cultivation conditions, growth rate, yield coefficient, substrate uptake rate, and formation of intracellular protease‐inhibiting substance in the single‐use bioreactor were similar to those in the glass bioreactor.  相似文献   

9.
10.
11.
Core promoter types differ in the extent to which RNA polymerase II (Pol II) pauses after initiation, but how this affects their tissue‐specific gene expression characteristics is not well understood. While promoters with Pol II pausing elements are active throughout development, TATA promoters are highly active in differentiated tissues. We therefore used a genomics approach on late‐stage Drosophila embryos to analyze the properties of promoter types. Using tissue‐specific Pol II ChIP‐seq, we found that paused promoters have high levels of paused Pol II throughout the embryo, even in tissues where the gene is not expressed, while TATA promoters only show Pol II occupancy when the gene is active. The promoter types are associated with different chromatin accessibility in ATAC‐seq data and have different expression characteristics in single‐cell RNA‐seq data. The two promoter types may therefore be optimized for different properties: paused promoters show more consistent expression when active, while TATA promoters have lower background expression when inactive. We propose that tissue‐specific genes have evolved to use two different strategies for their differential expression across tissues.  相似文献   

12.
In natural environments, bacteria are frequently exposed to sub‐lethal levels of DNA damage, which leads to the induction of a stress response (the SOS response in Escherichia coli). Natural environments also vary in nutrient availability, resulting in distinct physiological changes in bacteria, which may have direct implications on their capacity to repair their chromosomes. Here, we evaluated the impact of varying the nutrient availability on the expression of the SOS response induced by chronic sub‐lethal DNA damage in E. coli. We found heterogeneous expression of the SOS regulon at the single‐cell level in all growth conditions. Surprisingly, we observed a larger fraction of high SOS‐induced cells in slow growth as compared with fast growth, despite a higher rate of SOS induction in fast growth. The result can be explained by the dynamic balance between the rate of SOS induction and the division rates of cells exposed to DNA damage. Taken together, our data illustrate how cell division and physiology come together to produce growth‐dependent heterogeneity in the DNA damage response.  相似文献   

13.
The Gram‐negative bacterium Legionella pneumophila is the causative agent of Legionnaires'' disease and replicates in amoebae and macrophages within a distinct compartment, the Legionella‐containing vacuole (LCV). The facultative intracellular pathogen switches between a replicative, non‐virulent and a non‐replicating, virulent/transmissive phase. Here, we show on a single‐cell level that at late stages of infection, individual motile (PflaA‐GFP‐positive) and virulent (PralF‐ and PsidC‐GFP‐positive) L. pneumophila emerge in the cluster of non‐growing bacteria within an LCV. Comparative proteomics of PflaA‐GFP‐positive and PflaA‐GFP‐negative L. pneumophila subpopulations reveals distinct proteomes with flagellar proteins or cell division proteins being preferentially produced by the former or the latter, respectively. Toward the end of an infection cycle (˜ 48 h), the PflaA‐GFP‐positive L. pneumophila subpopulation emerges at the cluster periphery, predominantly escapes the LCV, and spreads from the bursting host cell. These processes are mediated by the Legionella quorum sensing (Lqs) system. Thus, quorum sensing regulates the emergence of a subpopulation of transmissive L. pneumophila at the LCV periphery, and phenotypic heterogeneity underlies the intravacuolar bi‐phasic life cycle of L. pneumophila.  相似文献   

14.
ObjectivesIdiopathic pulmonary fibrosis (IPF) is marked by the excessive accumulation of extracellular matrix, which participates in a variety of chronic diseases or injuries and seriously threatens human health. Due to the side effects of clinical drugs, there is still a need to develop novel and less toxic drugs to treat pulmonary fibrosis.Materials and MethodsSKLB‐YTH‐60 was developed through computer‐aided drug design, de novo synthesis and high‐throughput screening. We employed the bleomycin (BLM)‐induced lung fibrosis animal models and used TGF‐β1 to induce the epithelial‐mesenchymal transition (EMT) of A549 cells in vitro. Meanwhile, the protein expression of collagen I and the α‐smooth muscle actin (α‐SMA), E‐cadherin, p‐FGFR1, p‐PLCγ, p‐Smad2/3 and p‐Erk1/2 was detected by western blot.ResultsYTH‐60 has obvious anti‐proliferative activity on fibroblasts and A549 cells. Moreover, YTH‐60 could impair the EMT of A549 cells and suppressed fibrosis by inhibiting FGFR and TGF‐β/Smad‐dependent pathways. Intraperitoneal administration of preventive YTH‐60 could significantly reduce the degree of fibrosis in mice and regulate the imbalance of the immune microenvironment. In addition, we observed that therapeutic YTH‐60 treatment attenuated fibrotic changes in mice during the period of fibrosis. Importantly, YTH‐60 has shown an acceptable oral bioavailability (F = 17.86%) and appropriate eliminated half‐life time (T 1/2 = 8.03 hours).ConclusionsTaken together, these preclinical evaluations suggested that YTH‐60 could be a promising drug candidate for treating IPF.  相似文献   

15.
Spatial capture–recapture (SCR) analysis is now used routinely to inform wildlife management and conservation decisions. It is therefore imperative that we understand the implications of and can diagnose common SCR model misspecifications, as flawed inferences could propagate to policy and interventions. The detection function of an SCR model describes how an individual''s detections are distributed in space. Despite the detection function''s central role in SCR, little is known about the robustness of SCR‐derived abundance estimates and home range size estimates to misspecifications. Here, we set out to (a) determine whether abundance estimates are robust to a wider range of misspecifications of the detection function than previously explored, (b) quantify the sensitivity of home range size estimates to the choice of detection function, and (c) evaluate commonly used Bayesian p‐values for detecting misspecifications thereof. We simulated SCR data using different circular detection functions to emulate a wide range of space use patterns. We then fit Bayesian SCR models with three detection functions (half‐normal, exponential, and half‐normal plateau) to each simulated data set. While abundance estimates were very robust, estimates of home range size were sensitive to misspecifications of the detection function. When misspecified, SCR models with the half‐normal plateau and exponential detection functions produced the most and least reliable home range size, respectively. Misspecifications with the strongest impact on parameter estimates were easily detected by Bayesian p‐values. Practitioners using SCR exclusively for density estimation are unlikely to be impacted by misspecifications of the detection function. However, the choice of detection function can have substantial consequences for the reliability of inferences about space use. Although Bayesian p‐values can aid the diagnosis of detection function misspecification under certain conditions, we urge the development of additional custom goodness‐of‐fit diagnostics for Bayesian SCR models to identify a wider range of model misspecifications.  相似文献   

16.
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.  相似文献   

17.
Cytotoxic necrotizing factors (CNFs) are bacterial single‐chain exotoxins that modulate cytokinetic/oncogenic and inflammatory processes through activation of host cell Rho GTPases. To achieve this, they are secreted, bind surface receptors to induce endocytosis and translocate a catalytic unit into the cytosol to intoxicate host cells. A three‐dimensional structure that provides insight into the underlying mechanisms is still lacking. Here, we determined the crystal structure of full‐length Yersinia pseudotuberculosis CNFY. CNFY consists of five domains (D1–D5), and by integrating structural and functional data, we demonstrate that D1–3 act as export and translocation module for the catalytic unit (D4–5) and for a fused β‐lactamase reporter protein. We further found that D4, which possesses structural similarity to ADP‐ribosyl transferases, but had no equivalent catalytic activity, changed its position to interact extensively with D5 in the crystal structure of the free D4–5 fragment. This liberates D5 from a semi‐blocked conformation in full‐length CNFY, leading to higher deamidation activity. Finally, we identify CNF translocation modules in several uncharacterized fusion proteins, which suggests their usability as a broad‐specificity protein delivery tool.  相似文献   

18.
Bacillus cereus sensu lato is a group of Gram‐positive endospore‐forming bacteria with high ecological diversity. Their endospores are decorated with micrometer‐long appendages of unknown identity and function. Here, we isolate endospore appendages (Enas) from the food poisoning outbreak strain B. cereus NVH 0075‐95 and find proteinaceous fibers of two main morphologies: S‐ and L‐Ena. By using cryoEM and 3D helical reconstruction of S‐Enas, we show these to represent a novel class of Gram‐positive pili. S‐Enas consist of single domain subunits with jellyroll topology that are laterally stacked by β‐sheet augmentation. S‐Enas are longitudinally stabilized by disulfide bonding through N‐terminal connector peptides that bridge the helical turns. Together, this results in flexible pili that are highly resistant to heat, drought, and chemical damage. Phylogenomic analysis reveals a ubiquitous presence of the ena‐gene cluster in the B. cereus group, which include species of clinical, environmental, and food importance. We propose Enas to represent a new class of pili specifically adapted to the harsh conditions encountered by bacterial spores.  相似文献   

19.
The intra‐erythrocyte stage of P. falciparum relies primarily on glycolysis to generate adenosine triphosphate (ATP) and the energy required to support growth and reproduction. Lactic acid, a metabolic byproduct of glycolysis, is potentially toxic as it lowers the pH inside the parasite. Plasmodium falciparum formate–nitrite transporter (PfFNT), a 34‐kDa transmembrane protein, has been identified as a novel drug target as it exports lactate from inside the parasite to the surrounding parasitophorous vacuole within the erythrocyte cytosol. The structure and detailed molecular mechanism of this membrane protein are not yet available. Here we present structures of PfFNT in the absence and presence of the functional inhibitor MMV007839 at resolutions of 2.56 Å and 2.78 Å using single‐particle cryo‐electron microscopy. Genetic analysis and transport assay indicate that PfFNT is able to transfer lactate across the membrane. Combined, our data suggest a stepwise displacement mechanism for substrate transport. The PfFNT membrane protein is capable of picking up lactate ions from the parasite’s cytosol, converting them to lactic acids and then exporting these acids into the extracellular space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号