首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
H umphrey , T.J. 1990. Heat resistance in Salmonella enteritidis phage type 4: the influence of storage temperatures before heating. Journal of Applied Bacteriology 69 493–497.
Storage of cultures of Salmonella enteritidis PT4 at either 4° or 8°C before heating significantly increased heat sensitivity. The differences between fresh and stored cultures, which became apparent after 4–7 h, were more pronounced with cultures stored at the lower temperature and in those heated at 60° rather than 55°C. Incubation of the stored cultures in either egg or Lemco broth for 30 min at 37°C prior to heating enabled the organisms to recover heat resistance.  相似文献   

2.
This study evaluated the impact of inoculum preparation and storage conditions on the response of Escherichia coli O157:H7 exposed to consumer-induced stresses simulating undercooking and digestion. Lean beef tissue samples were inoculated with E. coli O157:H7 cultures prepared in tryptic soy broth or meat decontamination runoff fluids (WASH) or detached from moist biofilms or dried biofilms formed on stainless steel coupons immersed in inoculated WASH. After inoculation, the samples were left untreated or dipped for 30 s each in hot (75 degrees C) water followed by lactic acid (2%, 55 degrees C), vacuum packaged, stored at 4 (28 days) or 12 degrees C (16 days), and periodically transferred to aerobic storage (7 degrees C for 5 days). During storage, samples were exposed to sequential heat (55 degrees C; 20 min) and simulated gastric fluid (adjusted to pH 1.0 with HCl; 90 min) stresses simulating consumption of undercooked beef. Under the conditions of this study, cells originating from inocula of planktonic cells were, in general, more resistant to heat and acid than cells from cultures grown as biofilms and detached prior to meat inoculation. Heat and acid tolerance of cells on meat stored at 4 degrees C was lower than that of cells on nondecontaminated meat stored at 12 degrees C, where growth occurred during storage. Decontamination of fresh beef resulted in injury that inhibited subsequent growth of surviving cells at 12 degrees C, as well as in decreases in resistance to subsequent heat and acid stresses. The shift of pathogen cells on beef stored under vacuum at 4 degrees C to aerobic storage did not affect cell populations or subsequent survival after sequential exposure to heat and simulated gastric fluid. However, the transfer of meat stored under vacuum at 12 degrees C to aerobic storage resulted in reduction in pathogen counts during aerobic storage and sensitization of survivors to the effects of sequential heat and acid exposure.  相似文献   

3.
The response of tumours to hyperthermia was tested by giving graded heat treatments and assessing local control at 90 days. Mice were divided into three groups which were pre-treated for 3 days in ambient temperatures of 4, 21 or 35 degrees C. This enabled the mean tumour resting temperature to be varied by up to 11 degrees C, before subsequent heat treatment. For the heat treatments, the tumours were clamped in order to eliminate blood flow, resulting in uniform temperature distributions and hence more uniform thermal sensitivity. TCD50 values were used to construct Arrhenius plots. For all three pre-treatment temperatures, these plots demonstrated a factor of 1.6 increase in heating time per degree Celsius reduction in heating temperature. However, tumours kept in a 4 degrees C environment before treatment were more thermally sensitive than those kept in 21 degrees C conditions, while those in a 35 degrees C environment were more resistant. Pretreatment at 4 degrees C was equivalent to an increase of either 0.5 degree C in heating temperature or 28 per cent in heating time, compared with pre-treatment at 21 degrees C. Pre-treatment at 35 degrees C was equivalent to a reduction of either 0.6 degree C in heating temperature or 25 per cent in heating time. These data indicate that the pre-treatment tumour temperature is an important parameter, but the effect of heat treatment is more closely related to absolute heating temperature rather than to the increase in temperature above the normal resting level.  相似文献   

4.
Hodge G  Markus C  Nairn J  Hodge S 《Cytokine》2005,32(1):7-11
Intracytoplasmic detection of leucocyte cytokines has become a powerful tool for the characterisation of cytokine-producing cells in heterogeneous cell populations, however the effect of specimen storage conditions is unknown. The aim of this study was to determine the effect of whole blood stored at room temperature (RT) or 4 degrees C, on intracellular cytokine production by T cells and monocytes. In cell cultures stored at RT or 4 degrees C for 24h, significant changes in several leucocyte cytokines/chemokines were shown compared to blood cultures stimulated at time=0. There was a significant decrease in IL-2, IL-4 and TNFalpha production by CD4+ T cells in blood cultures stored at RT but an increase in IL-2 in cultures at 4 degrees C. There was a significant decrease in TGFbeta production by CD4+ and CD8+ T cells in cultures kept at RT or 4 degrees C. There was a significant increase in MCP-1 and MCP-3 production by monocytes in blood cultures kept at RT or 4 degrees C. There was a decrease in IL-12 production by monocytes in cultures kept at 4 degrees C, whereas IL-10 production was decreased at RT and increased in cultures kept at 4 degrees C. Blood stored at 4 degrees C showed less immunomodulatory changes than blood kept at RT although overall a possible Th1 bias at 4 degrees C.  相似文献   

5.
The effect of environmental storage relative humidity (RH) on the moisture content, viability, and moist heat and gaseous ethylene oxide (EO) resistance of biological indicators (BIs) was evaluated. No statistically significant difference was observed between the initial Bacillus stearothermophilus spore population and the spore population of BIs stored at 20 degrees C and 0, 20, 44, of 55% RH or under ambient, 4 degrees C, or -20 degrees C conditions after 12 months. A statistically significant decrease in moist heat resistance from initial starting levels was found for BIs stored at 20 degrees C and either 0 or 20% RH. There was a statistically significant decrease in the B. subtilis BI spore population, compared with initial levels, when the BIs were stored at 20 degrees C and 0% RH concomitant with a significant increase in their EO resistance. BI storage at 20 degrees C and 20 or 44% RH, or under ambient, 4 degrees C, or -20 degrees C conditions, had no significant effect on EO resistance. BIs stored at 20 degrees C and 66% RH demonstrated a significantly lower EO resistance compared with starting levels.  相似文献   

6.
When CHO cells were treated either for 10 min at 45-45.5 degrees C or for 1 hr with 100 microM sodium arsenite (ARS) or for 2 hr with 20 micrograms/ml puromycin (PUR-20), they became thermotolerant to a heat treatment at 45-45.5 degrees C administered 4-14 hr later, with thermotolerance ratios at 10(-3) isosurvival of 4-6, 2-3.2, and 1.7, respectively. These treatments caused an increase in synthesis of HSP families (70, 87, and 110 kDa) relative to total protein synthesis. However, for a given amount of thermotolerance, the ARS and PUR-20 treatments induced 4 times more synthesis than the heat treatment. This decreased effectiveness of the ARS treatment may occur because ARS has been reported to stimulate minimal redistribution of HSP-70 to the nucleus and nucleolus. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) or PUR (100 micrograms/ml) after the initial treatments greatly inhibited thermotolerance to 45-45.5 degrees C in all cases. However, for a challenge at 43 degrees C, thermotolerance was inhibited only for the ARS and PUR-20 treatments. CHM did not suppress heat-induced thermotolerance to 43 degrees C, which was the same as heat protection observed when CHM was added before and during heating at 43 degrees C without the initial heat treatment. These differences between the initial treatments and between 43 and 45 degrees C may possibly be explained by reports that show that heat causes more redistribution of HSP-70 to the nucleus and nucleolus than ARS and that redistribution of HSP-70 can occur during heating at 42 degrees C with or without the presence of CHM. Heating cells at 43 degrees C for 5 hr after thermotolerance had developed induced additional thermotolerance, as measured with a challenge at 45 degrees C immediately after heating at 43 degrees C. Compared to the nonthermotolerant cells, thermotolerance ratios were 10 for the ARS treatment and 8.5 for the initial heat treatment. Adding CHM (10 micrograms/ml) or PUR (100 micrograms/ml) to inhibit protein synthesis during heating at 43 degrees C did not greatly reduce this additional thermotolerance. If, however, protein synthesis was inhibited between the initial heat treatment and heating at 43 degrees C, protein synthesis was required during 43 degrees C for the development of additional thermotolerance to 45 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
After sodium arsenite (100 microM) treatment, the synthesis of three major heat shock protein families (HSPs; Mr = 110,000, 87,000, and 70,000), as studied with one-dimensional gels, was enhanced twofold relative to that of unheated cells. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed as a 100,000-fold increase in survival from 10(-6) to 10(-1) after 4 hr at 43 degrees C, and as a thermotolerance ratio (TTR) of 2-3 at 10(-3) isosurvival for heating at 45.5 degrees C. Cycloheximide (CHM: 10 micrograms/ml) or puromycin (PUR: 100 micrograms/ml), which inhibited total protein synthesis and HSP synthesis by 95%, completely suppressed the development of thermotolerance when either drug was added after sodium arsenite treatment and removed prior to the subsequent heat treatment. Therefore, thermotolerance induced by arsenite treatment correlated with an increase in newly synthesized HSPs. However, with or without arsenite treatment, CHM or PUR added 2-6 hr before heating and left on during heating caused a 10,000-100,000-fold enhancement of survival when cells were heated at 43 degrees C for 4 hr, even though very little synthesis of heat shock proteins occurred. Moreover, these cells manifesting resistance to heating at 43 degrees C after CHM treatment were much different than those manifesting resistance to 43 degrees C after arsenite treatment. Arsenite-treated cells showed a great deal of thermotolerance (TTR of about 10) when they were heated at 45 degrees C after 5 hr of heating at 43 degrees C, compared with less thermotolerance (TTR of about 2) for the CHM-treated cells heated at 45 degrees C after 5 hr of heating at 43 degrees C. Therefore, there are two different phenomena. The first is thermotolerance after arsenite treatment (observed at 43 degrees C or 45.5 degrees C) that apparently requires synthesis of HSPs. The second is resistance to heat after CHM or PUR treatment before and during heating (observed at 43 degrees C with little resistance at 45.5 degrees C) that apparently does not require synthesis of HSPs. This phenomenon not requiring the synthesis of HSPs also was observed by the large increase in thermotolerance to 45 degrees C caused by heating at 43 degrees C, with or without CHM, after cells were incubated for 6 hr following arsenite pretreatment. For both phenomena, a model based on synthesis and redistribution of HSPs is presented.  相似文献   

8.
A strain of Listeria monocytogenes isolated from a drain in a food-processing plant was demonstrated, by determination of D values, to be more resistant to the lethal effect of heat at 56 or 59 degrees C following incubation for 45 min in tryptose phosphate broth (TPB) at pH 12.0 than to that of incubation for the same time in TPB at pH 7.3. Cells survived for at least 6 days when they were suspended in TPB at pHs 9.0, 10.0, and 11.0 and stored at 4 or 21 degrees C. Cells of L. monocytogenes incubated at 37 degrees C for 45 min and then stored for 48 or 144 h in TPB at pH 10.0 were more resistant to heat treatment at 56 degrees C than were cells stored in TPB at pH 7.3. The alkaline-stress response in L. monocytogenes may induce resistance to otherwise lethal thermal-processing conditions. Treatment of cells in 0.05 M potassium phosphate buffer (pH 7.00 +/- 0.05) containing 2.0 or 2.4 mg of free chlorine per liter reduced populations by as much as 1.3 log(10) CFU/ml, while treatment with 6.0 mg of free chlorine per liter reduced populations by as much as 4.02 log(10) CFU/ml. Remaining subpopulations of chlorine-treated cells exhibited some injury, and cells treated with chlorine for 10 min were more sensitive to heating at 56 degrees C than cells treated for 5 min. Contamination of foods by L. monocytogenes cells that have survived exposure to processing environments ineffectively cleaned or sanitized with alkaline detergents or disinfectants may have more severe implications than previously recognized. Alkaline-pH-induced cross-protection of L. monocytogenes against heat has the potential to enhance survival in minimally processed as well as in heat-and-serve foods and in foods on holding tables, in food service facilities, and in the home. Cells surviving exposure to chlorine, in contrast, are more sensitive to heat; thus, the effectiveness of thermal processing in achieving desired log(10)-unit reductions is not compromised in these cells.  相似文献   

9.
10.
Dynamic intracellular ATP and Pi levels were measured non-invasively for Chinese hamster V79 cells by 31P-NMR under conditions of thermotolerance and heat-shock protein induction. High densities of cells were embedded in agarose strands, placed within a standard NMR sample tube, and perfused with medium maintained either at 37 or 43 degrees C at pH 7.35. Cell survival and heat-shock protein synthesis were assessed either from parallel monolayer cultures or cells dislodged from the agarose strands post-treatment. Thermotolerance (heat resistance) and heat-shock protein synthesis was induced by a 1 h exposure to 43 degrees C followed by incubation for 5 h at 37 degrees C. After the 5 h incubation at 37 degrees C, marked thermal resistance was observed in regard to survival with concomitant synthesis of two major heat-shock proteins at 70 and 103 kDa. Studies were also conducted where tolerance and heat-shock protein synthesis were partially inhibited by depletion of cellular glutathione (GSH) prior to and during heat treatment. Dynamic measurement of intracellular ATP of cells heated with or without GSH depletion revealed no change in steady-state levels immediately after heating or during the 5 h post-heating incubation at 37 degrees C where thermotolerance and heat-shock proteins develop. These data are consistent with other reported data for mammalian cells and indicate that the steady-state ATP levels in mammalian cells remain unchanged during and after the acquisition of the thermotolerant state.  相似文献   

11.
AIMS: To induce pathogenic Vibrio bacteria into a changed physiological state, in response to cold temperatures in sea water, and assess their sensitivity to heating and freezing, as compared with normal cells. METHODS AND RESULTS: Cells of exponential phase Vibrio vulnificus, V. cholerae and V. parahaemolyticus were washed and inoculated into flasks of sea water, which were stored at 20 and 4 degrees C. Cells stored at 20 degrees C could be recovered after 60 d on non-selective agar (heart infusion agar; HIA) and on the selective agar (thiosulphate citrate bile salts agar) which is used in most Vibrio detection methodology. At 4 degrees C cells became non-culturable on both agars over time. The non-culturable cells appeared to be metabolically active and maintained their membrane integrity, whilst undergoing a change in morphology from rod-shaped to coccoid cells. Resuscitation was possible, in some cases, by an upshift in temperature before plating and the addition of catalase to HIA plates was found to increase recovery. Studies were carried out to assess the sensitivity of the non-culturable cells to heating and freezing compared with the normal cells. Vibrio organisms, whether culturable or in the non-culturable form, were not inactivated by freezing to -20 degrees C. Heating studies showed that V. parahaemolyticus was very heat resistant at low temperatures. However, a pasteurization regime of 2 min at 70 degrees C was found to be effective against all three strains. Experiments showed that the non-culturable cells of all three strains were similar in their heat resistance or, in some cases, were more heat sensitive than cells in the normal form. CONCLUSIONS: Cells in the changed physiological form would not be detected in fish or seafood products by the current Vibrio detection methods. Freezing had no effect in reducing cell numbers. Vibrio parahaemolyticus was very heat resistant in the low temperature pasteurization studies. The higher pasteurization regime of 70 degrees C for 2 min was effective against all three pathogens. Non-culturable cells had similar heat sensitivity or were more heat sensitive than cells in the normal state. SIGNIFICANCE OF IMPACT OF THE STUDY: The study has highlighted a need for the development of better Vibrio detection methods. The low temperature pasteurization of oysters, which has been recommended in the USA, would not be adequate against the strain of V. parahaemolyticus used in this study. Heating regimes which were found to control cells in the normal form will also be effective for the control of the cells with changed physiology.  相似文献   

12.
The interactive effects of solutes, potassium sorbate and incubation temperature on growth, heat resistance and tolerance to freezing of Zygosaccharomyces rouxii were investigated. Growth rates in media supplemented with glucose, sucrose or NaCl to aw 0.93 were more rapid than in unsupplemented media (aw 0.99). Although growth in unsupplemented medium was lower at 35 degrees C, incubation at 21 degrees C or 35 degrees C had little effect on growth in media supplemented with glucose and sucrose. The addition of 300 micrograms potassium sorbate/ml to media resulted in reduced growth rates, particularly at 35 degrees C. Heat resistance of Z. rouxii was substantially greater in cultures previously incubated at 35 degrees C than in cultures incubated at 21 degrees C in media both with and without 300 micrograms potassium sorbate/ml. Zygosaccharomyces rouxii was tolerant to freezing at -18 degrees C for up to 120 d in all test media supplemented with glucose, sucrose or NaCl. The addition of 300 micrograms potassium sorbate/ml to sucrose-supplemented media resulted in increased resistance to freezing in cultures previously incubated at 21 degrees C. Sensitivity to freezing increased when cultures were incubated at 21 degrees C in media not supplemented with solutes. Glucose and sucrose provided the best protection against inactivation by heating and freezing, regardless of the presence of potassium sorbate in growth media.  相似文献   

13.
During 4 hr after puromycin (PUR: 20 micrograms/ml) treatment, the synthesis of three major heat shock protein families (HSPs: Mr = 110,000, 87,000, and 70,000) was enhanced 1.5-fold relative to that of untreated cells, as studied by one-dimensional gel electrophoresis. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed at 10(-3) isosurvival as a thermotolerance ratio (TTR) of either 2 or greater than 5 after heating at either 45.5 degrees C or 43 degrees C, respectively. However, thermotolerance was induced by only intermediate concentrations (3-30 micrograms/ml) of puromycin that inhibited protein synthesis by 15-80%; a high concentration of PUR (100 micrograms/ml) that inhibited protein synthesis by 95% did not induce either HSPs or thermotolerance. Also, thermotolerance was never induced by any concentration (0.01-10 micrograms/ml) of cycloheximide that inhibited protein synthesis by 5-94%. Furthermore, after PUR (20 micrograms/ml) treatment, the addition of cycloheximide (CHM: 10 micrograms/ml), at a concentration that reduces protein synthesis by 94%, inhibited both thermotolerance and synthesis of HSP families. Thus, thermotolerance induced by intermediate concentrations of PUR correlated with an increase in newly synthesized HSP families. This thermotolerance phenomenon was compared with another phenomenon termed heat resistance and observed when cells were heated at 43 degrees C in the presence of CHM or PUR immediately after a 2-hr pretreatment with CHM or PUR. Heat protection increased with inhibition of synthesis of both total protein and HSP families. Moreover, this heat protection decayed rapidly as the interval between pretreatment and heating increased to 1-2 hr, and did not have any obvious relationship to the synthesis of HSP families. Therefore, there are two distinctly different pathways for developing thermal resistance. The first is thermotolerance after intermediate concentrations of PUR treatment, and it requires incubation after treatment and apparently the synthesis of HSP families. The second is resistance to heat after CHM or PUR treatment immediately before and during heating at 43 degrees C, and it apparently does not require synthesis of HSP families. This second pathway not requiring the synthesis of HSP families also was observed by the increase in thermotolerance at 45.5 degrees C caused by heating at 43 degrees C after cells were incubated for 2-4 hr following pretreatment with an intermediate concentration of PUR.  相似文献   

14.
The aim of the present study was to determine whether heat shock protein 72 (HSP72) is induced in a heated rat model at rectal temperatures below 42 degrees C. Rats were divided into a control group and six groups (n = 6) heated to different rectal temperatures: 39 degrees C for 1 h (39), 40.0 degrees C for either 15 min (40S) or 1 h (40L), 41.0 degrees C for either 15 min (41S) or 1 h (41L) and 42.0 degrees C for 15 min (42). Tissues were sampled 4 h after heating. Following 1 h at 40.0 degrees C, HSP72 was significantly elevated in heart (p < 0.005), but not in gut or liver tissue. In all three tissues, HSP72 was significantly elevated under the conditions 41L and 42 compared to control tissue (p < 0.005). Marked differences were found in the amount of HSP72 induced in different tissues in response to the same heat stress. Duration of heating was important in modulating HSP72 induction, with a significantly greater induction of HSP72 following 1 h compared to 15 min at 41 degrees C in all three tissues (p < 0.02). A correlation was found between thermal load and HSP72 content in liver, heart (both p < 0.01) and gut (p < 0.001) for the rats heated to 41 and 42 degrees C. These data show that HSP72 is induced at temperatures below 42 degrees C, with striking differences between tissues.  相似文献   

15.
We have shown that heat shock does not induce the synthesis of hsp70 in FM3A cells maintained at a low culture temperature of 33 degrees C although it does so in cells maintained at 37 degrees C [T. Hatayama et al. (1991) Biochem. Int. 24, 467-474]. In this paper, we show that FM3A cells maintained at 37 degrees C produced hsp70 mRNA during continuous heating at 42 degrees C or during postincubation at either 37 or 33 degrees C after being heated at 45 degrees C for 15 min, whereas cells maintained at 33 degrees C did not produce hsp70 mRNA during continuous heating at 37, 39, 42, or 45 degrees C, or during postincubation after being heated at any temperature. Thus the lack of hsp70 synthesis in cells maintained at 33 degrees C seemed to be due to the absence of hsp70 mRNA induction. Also, hsp70 was accumulated in cells maintained at 37 degrees C during continuous heating at 42 degrees C and during postincubation at 37 degrees C after heat shock at 45 degrees C, but not during postincubation at 33 degrees C. The cellular level of the constitutive hsp73 as well as the mRNA level were both similar in cells maintained at 33 and 37 degrees C. On the other hand, the cellular level of the constitutive hsp105 in cells maintained at 33 degrees C was only half of that in cells maintained at 37 degrees C. These hsp105 levels increased significantly in both types of cells after continuous heating at 39 degrees C. These findings indicate that the culture temperature affects not only the induction of hsp70 mRNA but also the accumulation of hsp70 and hsp105 in the cells.  相似文献   

16.
17.
To quantitatively relate heat killing and heat radiosensitization, asynchronous or G1 Chinese hamster ovary (CHO) cells at pH 7.1 or 6.75 were heated and/or X-irradiated 10 min later. Since no progression of G1 cells into S phase occurred during the heat and radiation treatments, cell cycle artifacts were minimized. However, results obtained for asynchronous and G1 cells were similar. Hyperthermic radiosensitization was expressed as the thermal enhancement factor (TEF), defined as the ratio of the D0 of the radiation survival curve to that of the D0 of the radiation survival curve for heat plus radiation. The TEF increased continuously with increased heat killing at 45.5 degrees C, and for a given amount of heat killing, the amount of heat radiosensitization was the same for both pH's. When cells were heated chronically at 42.4 degrees C at pH 7.4, the TEF increased initially to 2.0-2.5 and then returned to near 1.0 during continued heating as thermal tolerance developed for both heat killing and heat radiosensitization. However, the shoulder (Dq) of the radiation survival curve for heat plus radiation did not manifest thermal tolerance; i.e., it decreased continuously with increased heat killing, independent of temperature, pH, or the development of thermotolerance. These results suggest that heat killing and heat radiosensitization have a target(s) in common (TEF results), along with either a different target(s) or a difference in the manifestation of heat damage (Dq results). For clinical considerations, the interaction between heat and radiation was expressed as (1) the thermal enhancement ratio (TER), which is the dose of X rays alone divided by the dose of X rays combined with heat to obtain an isosurvival, e.g., 10(-4), and (2) the thermal gain factor (TGF), the ratio of the TER at pH 6.75 to the TER at pH 7.4. Since low pH reduced the rate of development of thermal tolerance during heating at low temperatures, low pH enhanced heat killing more at 42-42.5 degrees C than at 45.5 degrees C where thermal tolerance did not develop. Therefore, the increase in the TGF after chronic heating at 42-42.5 degrees C was greater than after acute heating at 45.5 degrees C, due primarily to the increase in heat killing causing an even greater increase in heat radiosensitization. These findings agree with animal experiments suggesting that in the clinic, a therapeutic gain for tumor cells at low pH may be greater for temperatures of 42-42.5 degrees C than of 45.5 degrees C.  相似文献   

18.
Effects of low culture temperature on the induction of heat shock proteins in FM3A cells by a heat shock and on the thermal sensitivity of the cells were examined. FM3A cells maintained at 33 degrees C could not induce hsp70 during continuous heating or after a short heat shock at either 39, 42, or 45 degrees C, although FM3A cells maintained at a normal culture temperature of 37 degrees C can induce the synthesis of hsp70. Furthermore, the cells maintained at 33 degrees C were more sensitive to the subsequent heat shock than the cells maintained at 37 degrees C. Thus, the culture temperature of the mammalian cells may be an important factor for the induction of hsp70, and hsp70 may play an important role to protect or repair the thermal damage of cells.  相似文献   

19.
AIMS: The aim of this study was to optimize survival of Lactobacillus delbrueckii subsp. bulgaricus during spray-drying and subsequent storage through optimizing the pH of growth conditions. METHODS AND RESULTS: Cell concentrates previously grown without or with pH controlled were spray-dried and stored at 20 degrees C and heat treated at 57 degrees C. Cells grown under noncontrolled pH were more resistant to both drying and heating than cells grown under controlled pH but no significant differences were observed during storage. The intracellular proteins profile of cells grown under both conditions was studied by two-dimensional SDS-polyacrylamide gel electrophoresis. Eight proteins were identified using automated mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data acquisition. Of the identified proteins, only cochaperonin GroES corresponded to a known heat shock protein (HSP). The other proteins identified are proteins involved in glycolysis. For cells grown under noncontrolled pH the expression of the Hsp70, GroES and GroEL, measured by Western blotting, was enhanced. CONCLUSIONS: The higher resistance of cells grown under noncontrolled pH correlates with the enhanced production of heat shock proteins. SIGNIFICANCE AND IMPACT OF THE STUDY: Growth of L. bulgaricus under controlled pH (commonly used by the starter cultures production industry) results in cells more sensitive to stresses frequently encountered by the cells during starter cultures preparation/storage/utilization.  相似文献   

20.
Antifreeze proteins (AFPs) non-colligatively lower the freezing point of aqueous solutions, block membrane ion channels and thereby confer a degree of protection during cooling. Ovine embryos following prolonged hypothermic storage were used to determine 1) the type and concentration of a group of AFPs that can confer hypothermic tolerance, 2) the storage temperature, 3) the cooling rate, and 4) the in vitro and in vivo viability. In Experiment 1, Grade 1 and 2 embryos produced following superovulation were either cultured fresh (control) or stored at 4 degrees C for 4 d in media containing protein from 1 of 3 sources: Winter Flounder (WF; AFP Type 1); Ocean Pout (OP; AFP Type 3) at a concentration of 1 or 10 mg/ml; or bovine serum albumen (BSA) at 4 mg/ml in phosphate buffered saline (PBS). Following 72 h of culture, the viability rates were not different between controls (18 21 ); BSA (9 15 ); WF at 1 mg/ml (14 15 ); WF at 10 mg/ml (13 15 ) or OP at I mg/n-d (15 21 ), but were decreased (P < 0.05) in embryos stored in OP at 1 0 mg/ml (I 1 20 ). Pooled data showed higher (P < 0.05) viability rates for WF (27 30 ) than for OP (26 41 ) or BSA (9 15 ). There was no effect of protein source on hatching rates, but mean hatched diameters of embryos were lower (P < 0.05) following storage in BSA. In Experiment 2, Grade I to 3 embryos were either cultured fresh or stored for 4 d at 0 degrees or 4 degrees C in 4 mg/n-d BSA or 1 mg/ml WF. Embryos stored in WF at 4 degrees C (WF/4 degrees C) had comparable hatching rates (8 12 ) to that of controls (10 10 ), but embryos in the other treatments (WF 0 degrees C, 5 11 , BSA 4 degrees C, 6 11 and BSA 0 degrees C, 3 10 ) had significantly lower hatching rates (P < 0.01) compared with controls. Hatched diameters were comparable between controls and embryos stored in WF 4 degrees C, but embryos stored in WF 0 degrees C and BSA at both temperatures had smaller diameters (P < 0.05). In Experiment 3, Grade 1 to 3 embryos were either transferred fresh or were stored for 4 d at 4 degrees C in 4 mg/ml BSA or 1 mg/ml WF at different cooling rates (T1, BSA > 2 degrees C/min; T2, WF > 2 degrees C/min and T3, WF < 1 degrees C/min) prior to transfer. There were no differences in the number of ewes pregnant (T1, 10 1 1; T2, 6 10 and T3, 8 10 ) or in the number of viable fetuses recovered per treatment (T1, 14 25 ; T2, 10 1 4 and T3, 15 2 1) to indicate a negative effect of cooling rate or protein on embryo survival. In conclusion, ovine embryos can be stored in WF or BSA at 4 degrees C for 4 d, yielding similar pregnancy and embryo survival rates as fresh embryos following transfer to recipient ewes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号