首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replication of bacteriophage Mu DNA, a process requiring efficient synapsis of the prophage ends, takes place within the confines of the Escherichia coli nucleoid. Critical to ensuring rapid synapsis is the function of the SGS, a strong gyrase site, located at the centre of the Mu genome. Replacement of the SGS by the strong gyrase sites from pSC101 or pBR322 fails to support efficient prophage replication. To probe the unique SGS properties we undertook a biochemical analysis of the interaction of DNA gyrase with the Mu SGS, pSC101 and pBR322 sites. In binding and cleavage assays the order of efficacy was pSC101 > Mu SGS > pBR322. However, in supercoiling assays the Mu SGS (cloned into pUC19) exhibited a strong enhancement of gyrase-catalysed supercoiling over pUC19 alone; the pSC101 site showed none and the pBR322 site gave a moderate improvement. Most striking was the Mu SGS-dependent increase in processivity of the gyrase reaction. This highly processive supercoiling coupled with efficient binding may account for the unique biological properties of the SGS. The results emphasize the importance of the DNA substrate as an active component in modulating the gyrase supercoiling reaction, and in determining the biological roles of specialized gyrase sites.  相似文献   

2.
The Mu strong gyrase site (SGS), located in the centre of the Mu genome, is required for efficient Mu replication, as it promotes synapsis of the prophage termini. Other gyrase sites tested, even very strong ones, were unable to substitute for the SGS in Mu replication. To determine the features required for its unique properties, a deletion analysis was performed on the SGS. For this analysis, we defined the 20 bp centred on the midpoint of the 4 bp staggered cleavage made by gyrase to be the 'core' and the flanking sequences to be the 'arms'. The deletion analysis showed that (i) approximately 40 bp of the right arm is required, in addition to core sequences, for both efficient Mu replication and gyrase cleavage; and (ii) the left arm was not required for efficient Mu replication, although it was required for efficient gyrase cleavage. These observations implicated the right arm as the unique feature of the SGS. The second observation showed that strong gyrase cleavage and Mu replication could be dissociated and suggested that even weak gyrase sites, if supplied with the right arm of the SGS, could promote Mu replication. Hybrid sites were constructed with gyrase sites that could not support efficient Mu replication. The SGS right arm was used to replace one arm of the strong pSC101 gyrase site or the weaker pBR322 site. The pSC101 hybrid site allowed efficient Mu replication, whereas the pBR322 hybrid site allowed substantial, but reduced, replication. Hence, it appears that optimal Mu replication requires a central strong gyrase site with the properties imparted by the right arm sequences. Possible roles for the SGS right arm in Mu replication are addressed.  相似文献   

3.
The bacteriophage Mu strong gyrase site (SGS), required for efficient phage DNA replication, differs from other gyrase sites in the efficiency of gyrase binding coupled with a highly processive supercoiling activity. Genetic studies have implicated the right arm of the SGS as a key structural feature for promoting rapid Mu replication. Here, we show that deletion of the distal portion of the right arm abolishes efficient binding, cleavage, and supercoiling by DNA gyrase in vitro. DNase I footprinting analysis of the intact SGS revealed an adenylyl imidodiphosphate-dependent change in protection in the right arm, indicating that this arm likely forms the T segment that is passed through the cleaved G segment during the supercoiling reaction. Furthermore, in an SGS derivative with an altered right-arm sequence, the left arm showed these changes, suggesting that the selection of a T segment by gyrase is determined primarily by the sequences of the arms. Analysis of the sequences of the SGS and other gyrase sites suggests that the choice of T segment correlates with which arm possesses the more extensive set of phased anisotropic bending signals, with the Mu right arm possessing an unusually extended set of such signals. The implications of these observations for the structure of the gyrase-DNA complex and for the biological function of the Mu SGS are discussed.  相似文献   

4.
Oram M  Pato ML 《Journal of bacteriology》2004,186(14):4575-4584
The bacteriophage Mu genome contains a centrally located strong gyrase site (SGS) that is required for efficient prophage replication. To aid in studying the unusual properties of the SGS, we sought other gyrase sites that might be able to substitute for the SGS in Mu replication. Five candidate sites were obtained by PCR from Mu-like prophage sequences present in Escherichia coli O157:H7 Sakai, Haemophilus influenzae Rd, Salmonella enterica serovar Typhi CT18, and two strains of Neisseria meningitidis. Each of the sites was used to replace the natural Mu SGS to form recombinant prophages, and the effects on Mu replication and host lysis were determined. The site from the E. coli prophage supported markedly enhanced replication and host lysis over that observed with a Mu derivative lacking the SGS, those from the N. meningitidis prophages allowed a small enhancement, and the sites from the Haemophilus and Salmonella prophages gave none. Each of the candidate sites was cleaved specifically by E. coli DNA gyrase both in vitro and in vivo. Supercoiling assays performed in vitro, with the five sites or the Mu SGS individually cloned into a pUC19 reporter plasmid, showed that the Mu SGS and the E. coli or N. meningitidis sequences allowed an enhancement of processive, gyrase-dependent supercoiling, whereas the H. influenzae or Salmonella serovar Typhi sequences did not. While consistent with a requirement for enhanced processivity of supercoiling for a site to function in Mu replication, these data suggest that other factors are also important. The relevance of these observations to an understanding of the function of the SGS is discussed.  相似文献   

5.
A strong DNA gyrase-binding site (SGS) is located midway between the termini of the bacteriophage Mu genome and is required for efficient replicative transposition. We have proposed that the SGS promotes the efficient synapsis of the Mu prophage ends (an obligate early step in replicative transposition), and that it does so by helping to organize the prophage DNA into a supercoiled loop with the SGS at the apex of the loop and the prophage termini at the base. The positioning of the synapsing termini equidistant from the SGS is a key element in the proposed model. To test this proposal, we have constructed prophages with a second, internal right end and asked whether the natural, external right end or the internal right end is used for synapsis with the left end in the presence and absence of the SGS. In the presence of the central SGS, the natural, or outside, right end was used exclusively and very efficiently. In the absence of the central SGS, the internal right end was used preferentially and inefficiently: the efficiency of transposition decreased with increasing distance between the internal right end and the left end. Repositioning the SGS midway between the left end and an internal right end allowed highly efficient use of the internal right end. These results support a model in which gyrase can influence long-range DNA interactions to promote efficient synapsis of Mu prophage ends.  相似文献   

6.
A set of AT-rich repeats is a common motif in prokaryotic replication origins. We have screened for proteins binding to the AT-rich repeat region in plasmids F, R1 and pSC101 using an electrophoretic mobility shift assay with PCR-amplified DNA fragments from the origins. The IciA protein, which is known to bind to the AT-rich repeat region in the Escherichia coli origin of chromosome replication, oriC, was found to bind to the corresponding region from plasmids F (oriS) and R1, but not to pSC101. DNase I footprint analysis showed that IciA interacted with the AT-rich region in both F and R1. When the IciA gene was deleted, the copy number of plasmid F increased somewhat, whereas there was no major effect on the replication of pSC101 and R1, or on the E. coli chromosome.  相似文献   

7.
E Wahle  A Kornberg 《The EMBO journal》1988,7(6):1889-1895
A protein in extracts of Escherichia coli that specifically binds the stabilizing par sequence of pSC101 was identified as DNA gyrase. The purified enzyme protects par against digestion by DNase I and exonuclease III. Competition assays demonstrate that gyrase has a 40-fold higher affinity for the 100-bp par sequence than for nonspecific DNA and that par is the major gyrase-binding site in pSC101 derivatives used in this and other studies. Within par, AT-rich sequences occur with a pronounced 10-bp periodicity that is shifted by 5 bp from a similar periodicity of GC-rich sequences. As judged by DNase I digestion, the GC sequences are exposed on the outside of the DNA wrapped around gyrase. The data suggest that the site-specificity of DNA gyrase may be partly determined by the bendability of the DNA. A 4-bp deletion that interferes with Par function in vivo also reduces the affinity for gyrase in vitro. However, a deletion of par causes little reduction in superhelical density in vivo. We conclude that DNA gyrase, while involved in the Par function, may not affect plasmid stability through its supercoiling activity or by an influence on DNA replication.  相似文献   

8.
With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase‐mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57‐SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85–90%. A twofold increase in plasmid yield was also observed for pUC57‐SGS in comparison to pUC57. pUC57‐SGS displayed greater segregational stability than pUC57‐cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064–2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

9.
Second-site mutations that allow stable inheritance of partition-defective pSC101 plasmids mapped to seven distinct sites in the 5' half of the plasmid repA gene. While the mutations also elevated pSC101 copy number, there was no correlation between copy number increase and plasmid stability. Combinations of mutations enabled pSC101 DNA replication in the absence of integration host factor and also stabilized par-deleted plasmids in cells deficient in DNA gyrase or defective in DnaA binding. Our findings suggest that repA mutations compensate for par deletion by enabling the origin region RepA-DNA-DnaA complex to form under suboptimal conditions. They also provide evidence that this complex has a role in partitioning that is separate from its known ability to promote plasmid DNA replication.  相似文献   

10.
Two cloning vector plasmids, pHSG415 (7100 bp) and a lambda phage cos site-containing derivative (cosmid) thereof, pHSG422 (8760 bp), were constructed from a low copy number plasmid (pSC101) replicon to permit the propagation of cloned DNA segments at low gene dosage levels. Two features of the vectors, namely temperature sensitivity of replication and inability to be mobilized by conjugative plasmids, cause them to exhibit a high level of "biological containment". The essential characteristics of pHSG415 and pHSG422 may be summarized as follows: (1) their genome copy number is low (4--6 copies/chromosome); (2) their replication ceases at high temperature and they are rapidly lost from host cells grown at temperatures of 37 degrees C and above; (3) the relaxation nick site of pSC101, which is thought to be synonymous with its origin of transfer replication, is absent from the vectors; as a consequence, they are not mobilized to a significant extent by co-existing conjugative plasmids that are able to mobilize wild-type pSC101; (4) they contain unique insertion sites for DNA fragments generated by the following restriction endonucleases: EcoRI, XhoI, XmaI, HindIII and PstI; pHSG415 additionally contains single BamHI, BstEII and HincII sites and may also be used to clone PvuI-generated fragments; (5) the plasmids confer upon their host cells resistance to chloramphenicol, kanamycin and ampicillin, and every unique cloning site, except those of BamHI and BstEII, is located within one of these antibiotic-resistance genes.  相似文献   

11.
Integration host factor (IHF), encoded by the himA and himD genes, is a histonelike DNA-binding protein that participates in many cellular functions in Escherichia coli, including the maintenance of plasmid pSC101. We have isolated and characterized a chromosomal mutation that compensates for the absence of IHF and allows the maintenance of wild-type pSC101 in him mutants, but does not restore IHF production. The mutation is recessive and was found to affect the gene topA, which encodes topoisomerase I, a protein that relaxes negatively supercoiled DNA and acts in concert with DNA gyrase to regulate levels of DNA supercoiling. A previously characterized topA mutation, topA10, could also compensate for the absence of IHF to allow pSC101 replication. IHF-compensating mutations affecting topA resulted in a large reduction in topoisomerase I activity, and plasmid DNA isolated from such strains was more negatively supercoiled than DNA from wild-type strains. In addition, our experiments show that both pSC101 and pBR322 plasmid DNAs isolated from him mutants were of lower superhelical density than DNA isolated from Him+ strains. A concurrent gyrB gene mutation, which reduces supercoiling, reversed the ability of topA mutations to compensate for a lack of him gene function. Together, these findings indicate that the topological state of the pSC101 plasmid profoundly influences its ability to be maintained in populations of dividing cells and suggest a model to account for the functional interactions of the him, rep, topA, and gyr gene products in pSC101 maintenance.  相似文献   

12.
Bacteriophage Mu DNA integration in Escherichia coli strains infected after alignment of chromosomal replication was analyzed by a sandwich hybridization assay. The results indicated that Mu integrated into chromosomal segments at various distances from oriC with similar kinetics. In an extension of these studies, various Hfr strains were infected after alignment of chromosomal replication, and Mu transposition was shut down early after infection. The positions of integrated Mu copies were inferred from the transfer kinetics of Mu to an F- strain. Our analysis indicated that the location of Mu DNA in the host chromosome was not dependent on the positions of host replication forks at the time of infection. However, the procedure for aligning chromosomal replication affected DNA transfer by various Hfr strains differently, and this effect could account for prior results suggesting preferential integration of Mu at host replication forks.  相似文献   

13.
Early events in the replication of Mu prophage DNA.   总被引:15,自引:4,他引:11       下载免费PDF全文
To determine whether the early replication of Mu prophage DNA proceeds beyond the termini of the prophage into hose DNA, the amounts of both Mu DNA and the prophage-adjacent host DNA sequences were measured using a DNA-DNA annealing assay after induction of the Mu vegetative cycle. Whereas Mu-specific DNA synthesis began 6 to 8 min after induction, no amplification of the adjacent DNA sequences was observed. These data suggest that early Mu-induced DNA synthesis is constrained within the boundaries of the Mu prophage. Since prophage Mu DNA does not undergo a prophage lambda-like excision from its original site after induction (E. Ljungquist and A. I. Bukhari, Proc. Natl. Acad. Sci. U.S.A. 74:3143--3147, 1977), we propose the existence of a control mechanism which excludes prophage-adjacent sequences from the initial mu prophage replication. The frequencies of the Mu prophage-adjacent DNA sequences, relative to other Escherichia coli genes, were not observed to change after the onset of Mu-specific DNA replication. This suggests that these regions remain associated with the host chromosome and continue to be replicated by the chromosomal replication fork. Therefore, we conclude that both the Mu prophage and adjacent host sequences are maintained in the host chromosome, rather than on an extrachromosomal form containing Mu and host DNA.  相似文献   

14.
A derivative of pSC101, pLC709, was constructed by ligation of the HincII-A fragment of pSC101 to the mini-colEI plasmid pVH51 and to a DNA fragment encoding resistance to the antibiotics streptomycin and spectinomycin. Insertions of the transposon Tn1000 (gamma-delta) into the pSC101 replication region of pLC709 were isolated following cotransfer of the plasmid with the sex factor F. The sites of insertion of the transposon were determined by restriction enzyme analysis and the replication and incompatibility properties of the insertion plasmids and DNA fragments cloned from them were analysed. The insertion mutations defined a locus, inc, of approximately 200 base-pairs that is responsible for pSC101-specific incompatibility. Two mutations adjacent to this region inactivate pSC101 replication but can be complemented in trans by a wild-type pSC101 plasmid, and thus define a trans-acting replication function, rep. The inc locus is within a larger region of some 450 base-pairs that is essential for pSC101 replication and that includes the origin of replication. This 450 base-pair segment can replicate in the presence of a helper plasmid that supplies the rep function in trans.  相似文献   

15.
16.
17.
Bacteriophage Mu DNA, like other transposable elements, requires DNA sequences at both extremities to transpose. It has been previously demonstrated that the transposition activity of various transposons can be influenced by sequences outside their ends. We have found that alterations in the neighboring plasmid sequences near the right extremity of a Mini-Mu, inserted in the plasmid pSC101, can exert an influence on the efficiency of Mini-Mu DNA transposition when an induced helper Mu prophage contains a polar insertion in its semi-essential early region (SEER). The SEER of Mu is known to contain several genes that can affect DNA transposition, and our results suggest that some function(s), located in the SEER of Mu, may be required for optimizing transposition (and thus, replication) of Mu genomes from restrictive locations during the lytic cycle.  相似文献   

18.
We report here that the Escherichia coli replication proteins DnaA, which is required to initiate replication of both the chromosome and plasmid pSC101, and DnaB, the helicase that unwinds strands during DNA replication, have effects on plasmid partitioning that are distinct from their functions in promoting plasmid DNA replication. Temperature-sensitive dnaB mutants cultured under conditions permissive for DNA replication failed to partition plasmids normally, and when cultured under conditions that prevent replication, they showed loss of the entire multicopy pool of plasmid replicons from half of the bacterial population during a single cell division. As was observed previously for DnaA, overexpression of the wild-type DnaB protein conversely stabilized the inheritance of partition-defective plasmids while not increasing plasmid copy number. The identification of dnaA mutations that selectively affected either replication or partitioning further demonstrated the separate roles of DnaA in these functions. The partition-related actions of DnaA were localized to a domain (the cell membrane binding domain) that is physically separate from the DnaA domain that interacts with other host replication proteins. Our results identify bacterial replication proteins that participate in partitioning of the pSC101 plasmid and provide evidence that these proteins mediate plasmid partitioning independently of their role in DNA synthesis.  相似文献   

19.
Summary We have shown that the plasmid pSC101 is unable to be maintained in strains of E. coli carrying deletions in the genes himA and hip which specify the pleitropic heterodimeric DNA binding protein, IHF. We show that this effect is not due to a modulation of the expression of the pSC101 RepA protein, required for replication of the plasmid. Inspection of the DNA sequence of the essential replication region of pSC101 reveals the presence of a site, located between the DnaA binding-site and that of RepA, which shows extensive homology with the consensus IHF binding site. The proximity of the sites suggests that these three proteins, IHF, DnaA, and RepA may interact in generating a specific DNA structure required for initiation of pSC101 replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号