首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diet of the starfish, Marthasterias glacialis (L.), consists of a variety of mollusc species, as well as ascidians and barnacles. Starfish densities are maximal where mussels, Choromytilus meridionalis (Krauss), are abundant and in such areas mussels form the bulk of the diet. Laboratory feeding experiments indicate that Marthasterias glacialis select mussels of particular sizes and that the length of prey taken is an increasing function of predator arm length. The time taken to consume each mussel is determined by the ratio of shell length to starfish size. The number of mussels consumed per day increases only slightly with starfish size, but because the prey taken increase in size, energy consumption is maintained at a relatively consistent 1% of predator body energy per day. Using prey selection and feeding rate data for different sized starfish, predictive three dimensional predation surfaces are developed for a natural starfish population feeding on either one or two cohort Choromytilus meridionalis populations. The models indicate that predatory effort should be concentrated on the smallest mussels when a single adult cohort is present, but on recruiting mussels just above the minimum prey size limit where two cohorts are present. Other major predators of mussels, the rock lobster, Jasus lalandii (Milne Edwards), and the whelk, Natica tecta Anton, appear to select similar size-ranges of prey to starfish, despite their differing body forms and feeding methods. Since the juveniles of all three predators can only take small mussels, predator recruitment may well depend upon the successful settlement of strong mussel cohorts. Evidence for such entrainment of predator cohorts to settlements of mussels is presented.  相似文献   

2.
The behavior of a California isolate of the predaceous nematode, Odontopharynx longicaudata de Man, was studied in water agar culture. When feeding on an Acrobeloides sp. the predator completed its life cycle in 13 to 14 days at 25 C. Optimum temperature for reproduction of the predator was 25 C, few individuals survived at 10 C, and 30 C was lethal. Males were necessary for reproduction, and at 25 C the sex ratio was about 1:1. All postembryonic stages were voracious feeders. A single female predator consumed 30 individuals of another Acrobeloides sp. in 1.5 days. Juveniles must feed in order to complete their development. Three modes of feeding were observed depending on the prey selected. A high degree of prey selectivity occurred; 6 of 17 nematode prey species were readily consumed by the predator, but there was little or no feeding on the remaining 11 species. Predation percentage varied with prey species. Consumption of Anguina pacificae and the two Acrobeloides spp. was almost 100%, consumption of A. amsinckiae, Pratylenchus vulnus, and Trichodorus sp. was 70-78%. Difference in final predator population densities was obtained after feeding on the two species of Acrobeloides. Final predator population densities increased linearly with increasing inoculum levels of the first Acrobeloides sp.  相似文献   

3.
Predation is a strong driver of population dynamics and community structure and it is essential to reliably quantify and predict predation impacts on prey populations in a changing thermal landscape. Here, we used comparative functional response analyses to assess how predator-prey interactions between dogfish and invertebrate prey change under different warming scenarios. The Functional Response Type, attack rate, handling time and maximum feeding rate estimates were calculated for Scyliorhinus canicula preying upon Echinogammarus marinus under temperatures of 11.3 °C and 16.3 °C, which represent both the potential daily variation and predicted higher summer temperatures within Strangford Lough, N. Ireland. A two x two design of “Predator Acclimated”, “Prey Acclimated”, “Both Acclimated”, and “Both Unacclimated” was implemented to test functional responses to temperature rise. Attack rate was higher at 11.3 °C than at 16.3 °C, but handling time was lower and maximum feeding rates were higher at 16.3 °C. Non-acclimated predators had similar maximum feeding rate towards non-acclimated and acclimated prey, whereas acclimated predators had significantly higher maximum feeding rates towards acclimated prey as compared to non-acclimated prey. Results suggests that the predator attack rate is decreased by increasing temperature but when both predator and prey are acclimated the shorter handling times considerably increase predator impact. The functional response of the fish changed from Type II to Type III with an increase in temperature, except when only the prey were acclimated. This change from population destabilizing Type II to more stabilizing Type III could confer protection to prey at low densities but increase the maximum feeding rate by Scyliorhinus canicula in the future. However, predator movement between different thermal regimes may maintain a Type II response, albeit with a lower maximum feeding rate. This has implications for the way the increasing population Scyliorhinus canicula in the Irish Sea may exploit valuable fisheries stocks in the future.  相似文献   

4.
Two basic models of mutualism are presented in which interactions among three species lead to mutualism between two of them. The models represent 2-species predator-prey or competition systems in which a third species acts as a mutualist with either the predator, the prey, or one of the competitors. The models include the assumptions that there is a cost of associating with the mutualist and that the mutualist population grows much more slowly than the other two populations. Special cases of these two models correspond to six qualitatively different types of mutualistic benefit, all of which are known to occur in nature: deterring predation, increasing prey availability, feeding on (or competing with) a predator, increasing competitive interactions, decreasing competitive interactions, and feeding on (or competing with) a competitor. These models and their special cases are subjected to a local stability analysis. The results show that mutualism based upon deterring predation, competing with a predator, or decreasing competitive interactions enhances local stability, while mutualism based upon increasing prey availability or increasing competitive interactions reduces local stability. These results clearly reject the idea that mutualism is an inherently unstable process, and reinforces the idea that each different kind of mutualism will have to be considered separately. Compared to 2-species models of mutualism, the 3-species models provide a more realistic representation of the structure of many mutualistic systems, the mechanisms by which one species benefits another, and the regulation of the interaction.  相似文献   

5.
Different prey species can vary in their significance to a particular predator. In the simplest case, the total available density or biomass of a guild of several prey species might be most relevant to the predator, but behavioural and ecological traits of different prey species can alter the picture. We studied the population dynamics of a predator–prey setting in Finland by fitting first-order log-linear vector autoregressive models to long-term count data from active breeding sites of the northern goshawk (Accipiter gentilis; 1986–2009), and to three of its main prey species (1983–2010): hazel grouse (Bonasa bonasia), black grouse (Tetrao tetrix) and capercaillie (T. urogallus), which belong to the same forest grouse guild and show synchronous fluctuations. Our focus was on modelling the relative significance of prey species and estimating the tightness of predator–prey coupling in order to explain the observed population dynamics, simultaneously accounting for effects of density dependence, winter severity and spatial correlation. We established nine competing candidate models, where different combinations of grouse species affect goshawk dynamics with lags of 1–3 years. Effects of goshawk on grouse were investigated using one model for each grouse species. The most parsimonious model for goshawk indicated separate density effects of hazel grouse and black grouse, and different effects with lags of 1 and 3 years. Capercaillie showed no effects on goshawk populations, while the effect of goshawk on grouse was clearly negative only in capercaillie. Winter severity had significant adverse effects on goshawk and hazel grouse populations. In combination, large-scale goshawk–grouse population dynamics are coupled, but there are no clear mutual effects for any of the individual guild members. In a broader context, our study suggests that pooling data on closely related, synchronously fluctuating prey species can result in the loss of relevant information, rather than increased model parsimony.  相似文献   

6.
The growth and loss terms of interacting populations, called functional responses, are known to have a significant impact on the extinction dynamics of ecological models. We are able to construct models that preclude extinction for any parameter value, simply through the use of particular combinations of functional responses. These structural coexistence (SC) models have functional responses where the per capita growth terms remain positive (non-vanishing), while the per capita loss terms tend to zero (vanishing) as the relevant population tends to zero. Any of the commonly used functional responses, such as Holling Types I, II, and III, lead to non-vanishing growth terms for nutrient uptake, while any type of nonlinearity such as Ivlev or density dependent mortality of the population leads to vanishing loss terms. In order for herbivore/carnivore feeding terms to simultaneously be a vanishing loss term for the prey and a non-vanishing growth term for the predator, the exponent on the predator population must be exactly one, whilst the exponent on the prey population must be greater than one (such as a Holling Type III response). Any SC system with at least one autotroph and (possibly many) heterotrophs will always possess an internal equilibrium point. We show that the inclusion of linear mortality terms are, however, sufficient to restore the possibility of population extinctions. This allows for the formulation of ‘mixed’ systems, where some populations are guaranteed to coexist, whilst others are subject to the possibility of extinction. SC models have use in studies of, for example, biogeochemical cycling or the plankton base of fisheries models, where extinction is not desirable or relevant.  相似文献   

7.
We present a general model for three interacting populations, where one population, called a mutualist, benefits a predator in its interaction with the prey. Biologically, there are four different ways in which the mutualist could benefit the predator: by enhancing prey growth rate, by enhancing the rate of prey capture, by providing an alternative food supply for the predator, and by enhancing the efficiency of utilization of prey, once they are ingested. We discuss examples of each type of interaction. We restrict our model to those situations in which the predator cannot survive on the prey in the absence of the mutualist. Therefore, if mutualism exists, it is obligate for the predator. Other conditions of the model include the dynamics of the prey and the mutualist alone and together in the absence of the predator. Given additional reasonable restrictions on the model, we determine the conditions for persistence, where persistence is defined as the continued existence of all three populations without any of them going extinct. There are two ways in which survival may arise in these models. Under one set of conditions, which is equivalent to the predator being able to invade a prey-mutualist system when rare, persistence will occur for any set of positive critical population sizes. Alternatively, survival will occur if there is an asymptotically stable interior equilibrium. However, the conditions for this are complex, and survival may occur only for initial populations in a limited region around the equilibrium.  相似文献   

8.
A stochastic discrete time model of a two prey, one predator interaction, an extension of one and two species models proposed by Leslie (1958) and Leslie and Gower, 1958, Leslie and Gower, 1960, is studied. Monte Carlo simulations and the stability properties of the analogous continuous time deterministic model suggest the following hypotheses. (1) The two prey, one predator interaction is in general unstable. The range of parameters allowing coexistence of all three species is small. (2) Deterministically the predator always survives. (3) If the parameters defining the effects of density on the rates of population growth are large, the simulations lead to the rapid extinction of all three species or all but one of the prey species even if the interaction is deterministically stable. (4) The outcome of this three species interaction is largely probabilistic over a wide range of parameters. (5) A prey species with a competitive advantage over a second prey species may still find it difficult to invade and displace the second prey species if the density of the second prey species is high. Increasing the density of the predator offsets this numerical advantage somewhat. (6) The introduction of a predator common to two noncompeting species of prey usually leads to the extinction of one of the prey species. (7) In a stable two prey, one predator interaction the fluctuations of the two prey species are nonperiodic and erratic. The fluctuations of the rarer prey species are damped relative to the commoner species and the fluctuations of the rarer prey species behave as if the series has no fixed mean abundance. The predator population fluctuates with a remarkably constant period. The relevance of these hypotheses to the problem of relating population stability and persistence with the number of species in a community is discussed.  相似文献   

9.
The spider mites Tetranychus evansi and T. urticae are key pests of tomato crops, for which no sustainable practical control strategy is available yet. A Brazilian (B) and an Argentinean (A) population of a phytoseiid predatory mite species, Phytoseiulus longipes, are able to develop and reproduce on T. evansi on tomato, whereas a Chilean (C) population is not. In order to better characterize the two distinct feeding behaviours of these three populations, life table data were assessed when the predator was offered T. evansi or T. urticae as prey on bean or tomato leaves. No effect of the prey offered nor the plant substrate was demonstrated on development durations of the three populations. However, immature mortality was low for the Argentinean and the Brazilian populations whatever the prey or plant substrate, whereas 89 % of P. longipes from Chile died before reaching adulthood when fed T. evansi on tomato. No difference in effect on female longevity was detected among the three populations. Finally, the demographic parameters of all populations were lower in presence of tomato compared to beans. Possible explanations for these results are discussed.  相似文献   

10.
We consider systems with one predator and one prey, or a common predator and two prey species (apparent competitors) in source and sink habitats. In both models, the predator species is vulnerable to extinction, if productivity in the source is insufficient to rescue demographically deficient sink populations. Conversely, in the model with two prey species, if the source is too rich, one of the prey species may be driven extinct by apparent competition, since the predator can maintain a large population because of the alternative prey. Increasing the rate of predator movement from the source population has opposite effects on prey and predator persistence. High emigration rate exposes the predator population to danger of extinction, reducing the number of individuals that breed and produce offspring in the source habitat. This may promote coexistence of prey by relaxing predation pressure and apparent competition between the two prey species. The number of sinks and spatial arrangement of patches, or connectivity between patches, also influence persistence of the species. More sinks favor the prey and fewer sinks are advantageous to the predator. A linear pattern with the source at one end is profitable for the predator, and a centrifugal pattern in which the source is surrounded by sinks is advantageous to the prey. When the dispersal rate is low, effects of the spatial structure may exceed those of the number of sinks. In brief, productivity in patches and patterns of connectivity between patches differentially influence persistence of populations in different trophic levels.  相似文献   

11.
A class of prey–predator models with infected prey is investigated. Predation terms are either of Holling type II or III, infection is either modelled by mass action or standard incidence. It is shown that the key for understanding the model behaviour is the competition of predators versus infection. In the presented models the predator is not susceptible to the infection and the infection of the prey has no influence on the ability of the predator of catching the prey. However, the prey population can be seen as a resource which both the predators and the infection depend on. The competition for this resource is strong—the principle of competitive exclusion holds for biologically meaningful choices of parameters as long as there is no destabilisation by a Hopf bifurcation. The representation of models in competition diagrams which are introduced in this article can be used for a wide range of competition models which seems to be a promising method with many potential applications.  相似文献   

12.
Populations often exhibit a pronounced degree of individual variability and this can be important when constructing ecological models. In this paper, we revisit the role of inter-individual variability in population persistence and stability under predation pressure. As a case study, we consider interactions between a structured population of zooplankton grazers and their predators. Unlike previous structured population models, which only consider variability of individuals according to the age or body size, we focus on physiological and behavioural structuring. We first experimentally demonstrate a high degree of variation of individual consumption rates in three dominant species of herbivorous copepods (Calanus finmarchicus, Calanus glacialis, Calanus euxinus) and show that this disparity implies a pronounced variation in the consumption capacities of individuals. Then we construct a parsimonious predator-prey model which takes into account the intra-population variability of prey individuals according to behavioural traits: effectively, each organism has a ‘personality’ of its own. Our modelling results show that structuring of prey according to their growth rate and vulnerability to predation can dampen predator-prey cycles and enhance persistence of a species, even if the resource stock for prey is unlimited. The main mechanism of efficient top-down regulation is shown to work by letting the prey population become dominated by less vulnerable individuals when predator densities are high, while the trait distribution recovers when the predator densities are low.  相似文献   

13.
As a prerequisite for models of foraging behaviour of the whelk, Morula marginalba Blainville (Muricidae), the effects of variation in density of prey on the rate of feeding of the predator were examined in field conditions for three coexisting species of prey. Densities of prey used were those at which the prey, two limpets and a barnacle, occurred naturally in the rocky intertidal habitat.Large limpets, Cellana tramoserica (Sowerby) can resist attacks by predatory gastropods by raising the mantle over the outside of the shell. These experiments showed that no C. tramoserica were killed by Morula marginalba even at very great densities and with no alternative prey present. For the small limpet Patelloida latistrigata (Angas), one of the whelk's most highly preferred prey, juveniles were eaten 1.4 times as fast as adults. Fitting the random predator equation gave greater attack coefficients and shorter handling times for juvenile than adult limpets.Sizes of both predator and prey affected rates of eating barnacles, Tesseropora rosea (Krauss), but not in a simple way. Whelks of 15-mm aperture length ate adult barnacles 4.2 times faster than did 12-mm whelks, but there was no significant difference in the rates at which the two sizes of snail ate juvenile barnacles.Rates of feeding on T. rosea and Patelloida latistrigata increased significantly with prey density. These results form a basis for including the density of prey in models of spatial dispersion of the predatory gastropod Morula marginalba.  相似文献   

14.
Examining the functional response of predators can provide insight into the role of predation in structuring prey populations and ecological communities. This study explored feeding behaviour and functional responses of planktivorous damselfishes when offered captive reared larvae of crown-of-thorns starfish, Acanthaster sp., with the aim of determining whether these predators could ever play a role in moderating outbreaks of Acanthaster sp. We examined predatory behaviour of 11 species of planktivorous damselfish, testing: (1) the relationship between predator size and predation rate, both within and among fish species; (2) consumption rates on larvae of Acanthaster sp. versus larvae of a common, co-occurring coral reef asteroid Linckia laevigata; (3) maximal feeding rates upon both Acanthaster sp. and L. laevigata; and (4) functional responses of planktivorous fishes to increasing densities of Acanthaster sp. Consumption rates of crown-of-thorns larvae by damselfishes were independent of predator size; however, there was a significant negative relationship between predator size and consumption rate of L. laevigata, when pooling across all predatory species. Some damselfishes, including Acanthochromis polyacanthus and Amblyglyphidodon curacao, consumed larval Acanthaster sp. at a greater rate than for L. laevigata. Most predatory species (all except A. curacao and Pomacentrus amboinensis) exhibited a Type II functional response whereby the increasing feeding rate decelerated with increasing prey density. In addition to revealing that a wide range of planktivorous fishes can prey upon larvae of Acanthaster sp., these data suggest that planktivorous damselfishes may have the capacity to buffer against population fluctuations of Acanthaster sp. Importantly, predators with Type II functional responses often contribute to stability of prey populations, though planktivorous fishes may be swamped by an abnormally high influx of larvae, potentially contributing to the characteristic population fluctuations of Acanthaster sp.  相似文献   

15.
Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has “top down” regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.  相似文献   

16.
Both prey density and developmental stage of pests and natural enemies are known to influence the effectiveness of biological control. However, little is known about the interaction between prey density and population structure on predation and fecundity of generalist predatory mites. Here, we evaluated the functional response (number of prey eaten by predator in relation to prey density) of adult females and nymphs of the generalist predatory mite Euseius concordis to densities of different developmental stages of the cassava green mite Mononychellus tanajoa, as well as the fecundity of adult females of the predator. We further assessed the instantaneous rate of increase, based on fecundity and mortality, of E. concordis fed on eggs, immatures and adults of M. tanajoa. Overall, nymphs and adults of E. concordis feeding on eggs, immatures and females of M. tanajoa had a type III functional response curve suggesting that the predator increased prey consumption rate as prey density increased. Both nymphs and adult females of the predator consumed more eggs than immatures of M. tanajoa from the density of 20 items per leaf disc onwards, revealing an interaction between prey density and developmental stage in the predatory activity of E. concordis. In addition, population growth rate was higher when the predator fed on eggs and immatures in comparison with females. Altogether our results suggest that E. concordis may be a good candidate for the biological control of M. tanajoa populations. However, the efficiency of E. concordis as a biological control agent of M. tanajoa is contingent on prey density and population structure.  相似文献   

17.
Ward DM  Nislow KH  Folt CL 《Oecologia》2008,156(3):515-522
The effect of predators on prey populations depends on how predator-caused mortality changes with prey population density. Predators can enforce density-dependent prey mortality and contribute to population stability, but only if they have a positive numerical or behavioral response to increased prey density. Otherwise, predator saturation can result in inversely density-dependent mortality, destabilizing prey populations and increasing extinction risk. Juvenile salmon and trout provide some of the clearest empirical examples of density-dependent mortality in animal populations. However, although juvenile salmon are very vulnerable to predators, the demographic effects of predators on juvenile salmon are unknown. We tested the interactive effects of predators and population density on the mortality of juvenile Atlantic salmon (Salmo salar) using controlled releases of salmon in natural streams. We introduced newly hatched juvenile salmon at three population density treatments in six study streams, half of which contained slimy sculpin (Cottus cognatus), a common generalist predator (18 release sites in total, repeated over two summers). Sculpin reversed the direction of density dependence for juvenile salmon mortality. Salmon mortality was density dependent in streams with no sculpin, but inversely density dependent in streams where sculpin were abundant. Such predator-mediated inverse density dependence is especially problematic for prey populations suppressed by other factors, thereby presenting a fundamental challenge to persistence of rare populations and restoration of extirpated populations.  相似文献   

18.
The nature of the functional response may be qualitatively understood as follows. Sigmoid responses to one food type may arise, in the presence of alternate foods, as a result of optimal feeding and foraging behavior. Sigmoid curves resulting from this cause I term class A curves. The same curve may also arise in the absence of alternate foods as a result of learning, individual variations in the level of food density at which predators begin feeding, or training effects. The latter I have termed class B curves. At very high food densities, a drop in food intake per predator might occur because of the tendency for predators to take easily found and captured items first and to become more selective when food is very common. Such “dome-shaped” curves have been found in the laboratory but should be rare in nature. Computer simulation of a three trophic-level system, using the phenotypic selection model of Emlen, indicates that natural selection acting on prey should encourage sigmoidality in the predator's class B functional response, at least in disturbed environments. The opposite force arises from selection acting on predators. However, given the magnitudes of growth efficiencies (see Eq. (8), it appears that at least for terrestrial vertebrates, selection on prey species is more important than selection on predators for determining functional responses. Accordingly, prey-predator systems occupying highly variable environments are expected to show more marked type III (class B) curves than systems in more stable areas. Finally, the role of functional response for prey-predator stability is discussed. Class A (alternate food) responses may result in population control for prey in multiple prey systems. Peterman and Pikitch have modeled systems in which type III functional response by predators, in systems where predation varies independently of prey, may lead to double equilibria. This picture is clouded, however, when predator populations are interactive with their food, though double equilibria are still possible (J. M. Emlen, 1984, “Population Biology: The Coevolution of Population Dynamics and Behavior,” Macmillan, New York, in press).  相似文献   

19.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics.  相似文献   

20.
Gösta Nachman 《Oikos》2001,94(1):72-88
Predators and prey are usually heterogeneously distributed in space so that the ability of the predators to respond to the distribution of their prey may have a profound influence on the stability and persistence of a predator‐prey system. A special type of dynamics is “hide‐and‐seek” characterized by a high turnover rate of local populations of prey and predators, because once the predators have found a patch of prey they quickly overexploit it, whereupon the starving predators either should move to better places or die. Continued persistence of prey and predators thus hinges on a long‐term balance between local extinctions and founding of new subpopulations. The colonization rate depends on the rate of emigration from occupied patches and the likelihood of successfully arriving at a suitable new patch, while extinction rate depends on the local population dynamics. Since extinctions and colonizations are both discrete probabilistic events, these phenomena are most adequately modeled by means of a stochastic model. In order to demonstrate the qualitative differences between a deterministic and stochastic approach to population dynamics, a spatially explicit tritrophic predator‐prey model is developed in a deterministic and a stochastic version. The model is parameterized using data for the two‐spotted spider mite (Tetranychus urticae) and the phytoseiid mite predator Phytoseiulus persimilis inhabiting greenhouse cucumbers.
Simulations show that the deterministic and stochastic approaches yield different results. The deterministic version predicts that the populations will exhibit violent fluctuations, implying that the system is fundamentally unstable. In contrast, the stochastic version predicts that the two species will be able to coexist in spite of frequent local extinctions of both species, provided the system consists of a sufficiently large number of local populations. This finding is in agreement with experimental results. It is therefore concluded that demographic stochasticity in combination with dispersal is capable of producing and maintaining sufficient asynchrony between local populations to ensure long‐term regional (metapopulation) persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号