首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wide angle x-ray scattering (WAXS) from oriented lipid multilayers is used to examine liquid-ordered (Lo)/liquid-disordered (Ld) phase coexistence in the system 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine/cholesterol (DOPC/DPPC/Chol), which is a model for the outer leaflet of the animal cell plasma membrane. Using the method of analysis developed in the accompanying work, we find that two orientational distributions are necessary to fit the WAXS data at lower temperatures, whereas only one distribution is needed at temperatures higher than the miscibility transition temperature, Tmix = 25-35°C (for 1:1 DOPC/DPPC with 15%, 20%, 25%, and 30% Chol). We propose that the necessity for two distributions is a criterion for coexistence of Lo domains with a high Sx-ray order parameter and Ld domains with a lower order parameter. This criterion is capable of detecting coexistence of small domains or rafts that the conventional x-ray criterion of two lamellar D spacings may not. Our Tmix values tend to be slightly larger than published NMR results and microscopy results when the fluorescence probe artifact is considered. This is consistent with the sensitivity of WAXS to very short time and length scales, which makes it more capable of detecting small, short-lived domains that are likely close to Tmix.  相似文献   

2.
Plant–soil feedbacks have been widely implicated as a driver of plant community diversity, and the coexistence prediction generated by a negative plant–soil feedback can be tested using the mutual invasibility criterion: if two populations are able to invade one another, this result is consistent with stable coexistence. We previously showed that two co-occurring Rumex species exhibit negative pairwise plant–soil feedbacks, predicting that plant–soil feedbacks could lead to their coexistence. However, whether plants are able to reproduce when at an establishment disadvantage (“invasibility”), or what drivers in the soil might correlate with this pattern, are unknown. To address these questions, we created experimental plots with heterogeneous and homogeneous soils using field-collected conditioned soils from each of these Rumex species. We then allowed resident plants of each species to establish and added invader seeds of the congener to evaluate invasibility. Rumex congeners were mutually invasible, in that both species were able to establish and reproduce in the other’s resident population. Invaders of both species had twice as much reproduction in heterogeneous compared to homogeneous soils; thus the spatial arrangement of plant–soil feedbacks may influence coexistence. Soil mixing had a non-additive effect on the soil bacterial and fungal communities, soil moisture, and phosphorous availability, suggesting that disturbance could dramatically alter soil legacy effects. Because the spatial arrangement of soil patches has coexistence implications, plant–soil feedback studies should move beyond studies of mean effects of single patch types, to consider how the spatial arrangement of patches in the field influences plant communities.  相似文献   

3.
May and MacArthur (1972) have demonstrated that where several species are in competition for a single resource the requirement of long term population stability sets an upper limit to the allowable similarity of competing species.Their model considers a community of N species competing on a one dimensional resource continuum e.g., food size. The limit beyond which coexistence is not possible occurs when the standard deviation w in food size which each species can accept is of about the same magnitude as the difference d in mean food size for species adjacent on the continuum.The contribution of the present paper is to investigate the behavior of this stability criterion when the assumption that all species have the same w and d is relaxed. On the one hand, the greater is the disparity in the widths for a given mean width, the more closely the species can pack together. On the other hand, the greater is the disparity in the spacings for a given mean spacing, the more widely apart the species must pack.The substance of the conclusions set forth by May and MacArthur stands firm when there is only a modest amount of variability in the widths and spacings. However, care should be taken when the variability is considerable.  相似文献   

4.
One mechanism for morphologically similar and sympatric species to avoid competition and facilitate coexistence is to feed on different prey items within different microhabitats. In the current study, we investigated and compared the diet of the two most common and similar‐sized bat species in Japan—Murina ussuriensis (Ognev, 1913) and Myotis ikonnikovi (Ognev, 1912)—to gain more knowledge about the degree of overlap in their diet and their foraging behavior. We found that both bat species consumed prey from the orders of Lepidoptera and Diptera most frequently, while the proportion of Dipterans was higher in the diet of M. ikonnikovi. Furthermore, we found a higher prey diversity in the diet of M. ikonnikovi compared to that of M. ussuriensis that might indicate that the former is a more generalist predator than the latter. In contrast, the diet of M. ussuriensis contained many Lepidopteran families. The higher probability of prey items likely captured via gleaning to occur in the diet of M. ussuriensis in contrast to M. ikonnikovi indicates that M. ussuriensis might switch between aerial‐hawking and gleaning modes of foraging behavior. We encourage further studies across various types of habitats and seasons to investigate the flexibility of the diet composition and foraging behavior of these two bat species.  相似文献   

5.
During embryogenesis, organisms with lecithotrophic indirect development usually accumulate large quantities of energetic reserves in the form of yolk that are necessary for larval survival. Since all sponges have lecithotrophic development, yolk formation is an ineludible step of their embryogenesis. Sponge yolk platelets have a wide range of morphological forms, from entirely lipid or protein platelets to a combined platelet showing both lipids and proteins and even glycogen. So far, there are no comparative studies on the nature and content of yolk in congeneric species of sponges inhabiting contrasting environments, which could have putative effects on the larval adaptation to environmental conditions. Here, we have taken advantage of the worldwide distribution of the sponge genus Mycale, in order to compare the embryogenesis and yolk formation in two species inhabiting contrasting latitudinal areas: M. acerata from Antarctic waters and M. laevis from the Caribbean. We have compared their brooded embryos and larvae using scanning and transmission electron microscopy, and calculated their energetic signatures based on the nature of their yolk. While the general morphological feature of embryos and larvae of both species were very similar, the main difference resided in the yolk nature. The Antarctic species, M. acerata, showed exclusively lipid yolk, whereas the Caribbean species, M. laevis, showed combined platelets of lipids and proteins and less frequently protein yolk platelets. The larvae of M. acerata were estimated to possess a two-fold energetic signature compared to that of M. laevis, which may have important ecological implications for their survival and for maintaining large population densities in the cold waters of the Southern Ocean.  相似文献   

6.
The mutualistic interaction between Ficus and their pollinating agaonid wasps constitutes an extreme example of plant-insect co-diversification. Most Ficus species are locally associated with a single specific agaonid wasp species. Specificity is ensured by each fig species emitting a distinctive attractive scent. However, cases of widespread coexistence of two agaonid wasp species on the same Ficus species are documented. Here we document the coexistence of two agaonid wasp species in Ficus septica: one yellow-colored and one black-colored. Our results suggest that their coexistence is facilitated by divergent ecological traits. The black species is longer-lived (a few more hours) and is hence active until later in the afternoon. Some traits of the yellow species must compensate for this advantage for their coexistence to be stable. In addition, we show that the composition of the scent emitted by receptive figs changes between sunrise and noon. The two species may therefore be exposed to somewhat different ranges of receptive fig scent composition and may consequently diverge in the way they perceive and/or respond to scents. Whether such situations may lead to host plant speciation is an open question.  相似文献   

7.
The introduction of invasive species that can replace native species is one of the most critical threats to the biodiversity of aquatic systems. Here we investigated the potential contribution of one factor to the coexistence of the indigenous amphipod Gammarus roeselii and the invasive amphipod Dikerogammarus villosus in the same ecosystem (Lake Constance) within different microhabitats. We quantitatively studied the influence of ambient ammonia concentrations on the distributions of the two amphipod species. We also assessed the ammonia tolerance ranges of both species in laboratory experiments by measuring mortality rate, precopula disruption, egg mortality, and microhabitat choice. The proportion of G. roeselii among the two amphipod species was significantly positively related to the ammonia concentration in the water, which indicated that the distribution of the invasive D. villosus was limited at high ammonia concentrations. Although the mortality rates of the two species did not significantly differ, G. roeselii was more tolerant to ammonia with regard to precopula disruption, egg mortality, and microhabitat choice. The effective ammonia concentrations that led to a significantly reduced direct reproductive success in D. villosus were within the range of the highest field concentrations measured, where only G. roeselii occurred. D. villosus may have a smaller range than the indigenous G. roeselii partially because of its lower tolerance to higher ammonia concentrations, which lead to reduced reproductive success. Beside other habitat parameters differences on ammonia tolerance between the two amphipods might allow their coexistence along a gradient of microhabitats in Lake Constance.  相似文献   

8.
We address the question of the long term coexistence of three interacting species whose dynamics are governed by the ordinary differential equations x i = X i f i (i = 1, 2, 3). In order for any theory in this area to be useful in practice, it must utilize as little information as possible concerning the forms of the f i , in view of the great difficulty of determining these experimentally. Here we obtain, under rather general conditions on the equations, a criterion for judging whether the species will coexist in a biologically realistic manner. This criterion depends only on the behaviour near the one or two species equilibria of the two dimensional subsystems, the behaviour there being relatively easy to examine experimentally. We show that with the exception of one class of cases, which is a generalization of a classical example of May and Leonard [21], invasibility at each such equilibrium suitably interpreted is both necessary and sufficient for a strong form of coexistence to hold. In the exceptional case, a single additional condition at the equilibria is enough to ensure coexistence.  相似文献   

9.
The authenticity of controversial species is a significant challenge for systematic biologists. Moschidae is a small family of musk deer in the Artiodactyla, composing only one genus, Moschus. Historically, the number of species in the Moschidae family has been debated. Presently, most musk deer species were restricted in the Tibetan Plateau and surrounding/adjacent areas, which implied that the evolution of Moschus might have been punctuated by the uplift of the Tibetan Plateau. In this study, we aimed to determine the evolutionary history and delimit the species in Moschus by exploring the complete mitochondrial genome (mtDNA) and other mitochondrial gene. Our study demonstrated that six species, M. leucogaster, M. fuscus, M. moschiferus, M. berezovskii, M. chrysogaster and M. anhuiensis, were authentic species in the genus Moschus. Phylogenetic analysis and molecular dating showed that the ancestor of the present Moschidae originates from Tibetan Plateau which suggested that the evolution of Moschus was prompted by the most intense orogenic movement of the Tibetan Plateau during the Pliocene age, and alternating glacial-interglacial geological eras.  相似文献   

10.
种间竞争会导致鸟类对自身的生存策略进行多方面调整,将多种因素结合起来分析不同鸟类的同域共存机制具有十分重要的意义.2009-2011年的3-7月,在辽宁省东部山区以悬挂人工巢箱的方法招引杂色山雀(Parus varius)和大山雀(Parus major),通过比较这两种鸟类在繁殖时间、繁殖参数和巢址选择上的差异,分析其繁殖期的栖息地选择及繁殖对策,探讨这两种鸟类同域共存的机制.结果表明,生态位的部分分离是大山雀和杂色山雀能够长期共存的基础.两者都是在繁殖期到来立即开始繁殖,均出现两次繁殖高峰,采用消减窝卵数的对策来适应环境质量的下降.对繁殖参数的分析表明,两种鸟类的繁殖对策都为k-选择,但大山雀略偏向r端,大山雀倾向高窝卵数、低繁殖成功率的繁殖策略;杂色山雀倾向低窝卵数、高繁殖成功率的繁殖策略.两种鸟类都选择在林龄较长的森林中筑巢,但是大山雀较注重巢址的安全性能,巢距地面较高,周围乔木密集;杂色山雀较为注重植被类型的选择,巢址多选择在植被多样、灌木生长茂盛的针阔混交林中,推测可能与杂色山雀的食物构成有关.  相似文献   

11.
It is argued that alternate prey species in the diet of a food-limited generalist predator should reduce each other's equilibrial abundances, whether or not they directly compete. Such indirect, interspecific interactions are labeled apparent competition. Two examples are discussed in which an observed pattern of habitat segregation was at first interpreted as evidence for direct competition, but later interpreted as apparent competition resulting from shared predation. In order to study the consequences of predator-mediated apparent competition in isolation from other complicating factors, a model community is analyzed in which there is no direct interspecific competition among the prey. An explicit necessary condition for prey species coexistence is derived for the case of one predator feeding on many prey species. This model community has several interesting properties: (1) Prey species with high relative values for a parameter ra are “keystone” species in the community; (2) prey species can be excluded from the community by “diffuse” apparent competition; (3) large changes in the niche breadth of the predator need not correspond to large changes in predator density; (4) the prey trophic level as a whole is regulated by the predator, yet each of its constituent species is regulated by both the predator and available resources; (5) increased productivity may either increase, decrease, or leave unchanged the number of species in the community; (6) a decrease in density-independent mortality may decrease species diversity. These conclusions seem to be robust to changes in the prey growth equations and to the incorporation of predator satiation. By contrast, adding prey refugia or predator switching to the model weakens these conclusions. If the predator can be satiated or switched, the elements aij comprising the community matrix may have signs opposite the long-term effect of j upon i. The effect of natural selection upon prey species coexistence is discussed. Unless ri, Ki, and ai are tightly coupled, natural selection within prey species i will tend to decrease the equilibrial abundance of species j.  相似文献   

12.
Life-history traits may have an important role in promoting species coexistence. However, the complexity of certain life cycles makes it difficult to draw conclusions about the conditions for coexistence or exclusion based on the study of short-term competitive dynamics. Brachionus plicatilis and B. manjavacasare two cryptic rotifer species co-occurring in many lakes on the Iberian Peninsula. They have a complex life cycle in which cyclical parthenogenesis occurs with diapausing stages being the result of sexual reproduction. B. plicatilis and B. manjavacasare identical in morphology and size, their biotic niches are broadly overlapping, and they have similar competitive abilities. However, the species differ in life-history traits involving sexual reproduction and diapause, and respond differently to salinity and temperature. As in the case of certain other species that are extremely similar in morphology, a fluctuating environment are considered to be important for their coexistence. We studied the long-term competitive dynamics of B. plicatilis and B. manjavacas under different salinity regimes (constant and fluctuating). Moreover, we focused on the dynamics of the diapausing egg bank to explore how the outcome of the entire life cycle of these rotifers can work to mediate stable coexistence. We demonstrated that these species do not coexist under constant-salinity environment, as the outcome of competition is affected by the level of salinity—at low salinity, B. plicatilis excluded B. manjavacas, and the opposite outcome occurred at high salinity. Competitive dynamics under fluctuating salinity showed that the dominance of one species over the other also tended to fluctuate. The duration of co-occurrence of these species was favoured by salinity fluctuation and perhaps by the existence of a diapausing egg bank. Stable coexistence was not found in our system, which suggests that other factors or other salinity fluctuation patterns might act as stabilizing processes in the wild.  相似文献   

13.
Closely related species of gall-forming aphids are often associated with a single host species. SixTetraneura species coexist on the Japanese elm,Ulmus davidiana, in Sapporo, northern Japan. This paper describes the probabilities of coexistence on macro- and microgeographic scales (i.e., on host trees and host leaves) and examines whether coexistence with conspecific or heterospecific galls on leaves or shoots has any effect on the fecundity of each aphid species using multiple regression. A Monte Carlo simulation showed that the frequency distribution of the numbers of species on individual host trees differed significantly from that expected from the null model. There were significantly positive or negative associations between species.Tetraneura radicicola andsorini always coexisted with other species on trees they infested. Multiple regression revealed that the coexistence of conspecific or heterospecific galls on individual leaves had no influence on the fecundity ofradicicola andsorini, but had a negative influence on that of sp. O. On average,radicicola andsorini produced a smaller number of offspring in galls than sp. O, and obviously consumed only a small part of resources available on the galled leaves. Evidence available suggests that although amensalism does arise between sp. O and other species, its influence in not so strong as to exclude sp. O competitively from theTetraneura community.  相似文献   

14.
E. C. Yip 《Insectes Sociaux》2014,61(4):403-406
Interference competition can profoundly influence the outcome of species interactions and may lead to either coexistence or exclusion. Our understanding of how interference can lead to coexistence remains incomplete, particularly when interference fails to result in resource partitioning. I document a novel form of interference competition between an ant (Myrmecia pyriformis) and a social spider (Delena cancerides) with similar foraging patterns. Of 120 nest boxes occupied by D. cancerides in the field, 7 (6 %) were invaded by M. pyriformis ants over a 2-month period. After eliminating spiders from the nest boxes, the ants proceeded to fill the boxes with debris, rendering them useless to the spiders. The ants do not occupy the nest boxes; thus, interference occurs at a resource that is necessary to one species, but not the other. I discuss how further research into this system may improve our understanding of how interference competition can support coexistence. I also suggest modeling exploitation and interference competition on multiple resources to align with this and other empirical examples where different forms of competition occur for different resources.  相似文献   

15.
Microbial communities are comprised of many species that coexist on small spatial scales. This is difficult to explain because many interspecies interactions are competitive, and ecological theory predicts that one species will drive the extinction of another species that competes for the same resource. Conversely, evolutionary theory proposes that natural selection can lead to coexistence by driving competing species to use non-overlapping resources. However, evolutionary escape from extinction may be slow compared to the rate of competitive exclusion. Here, we use experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae to study the evolution of coexistence in species that compete for resources. We find that while E. coli usually outcompetes S. cerevisiae in co-culture, a few populations evolved stable coexistence after ~1000 generations of coevolution. We sequenced S. cerevisiae and E. coli populations, identified multi-hit genes, and engineered alleles from these genes into several genetic backgrounds, finding that some mutations modified interactions between E. coli and S. cerevisiae. Together, our data demonstrate that coexistence can evolve, de novo, from intense competition between two species with no history of coevolution.Subject terms: Molecular evolution, Microbial ecology  相似文献   

16.
The ability of environmental variation to affect species coexistence is much studied, yet environmental variation is not always important. I present an approximate calculation for the long-run growth rate of a species in the presence of spatially and temporally correlated environmental variation. I then perform a factorial numerical experiment, varying the mean seed dispersal distances, competition radii, and overwinter seed survival probabilities for two competing species for an array of variational regimes, noting the effects on their long-run growth rates. I find, first, that purely spatial variation has a greater capacity for influence than variation with a temporal component. Second, spatiotemporal variation can promote coexistence as strongly as purely temporal variation or more so, given the right species traits. Third, if the environmental variation has a spatial component, traits which enable species to become spatially segregated promote coexistence most strongly. That is, it is the possibility of spatial segregation which gives spatial variation its large potential to promote coexistence.
Robin E. SnyderEmail:
  相似文献   

17.
Individuals within any species exhibit differences in size, developmental state, or spatial location. These differences coupled with environmental fluctuations in demographic rates can have subtle effects on population persistence and species coexistence. To understand these effects, we provide a general theory for coexistence of structured, interacting species living in a stochastic environment. The theory is applicable to nonlinear, multi species matrix models with stochastically varying parameters. The theory relies on long-term growth rates of species corresponding to the dominant Lyapunov exponents of random matrix products. Our coexistence criterion requires that a convex combination of these long-term growth rates is positive with probability one whenever one or more species are at low density. When this condition holds, the community is stochastically persistent: the fraction of time that a species density goes below \(\delta >0\) approaches zero as \(\delta \) approaches zero. Applications to predator-prey interactions in an autocorrelated environment, a stochastic LPA model, and spatial lottery models are provided. These applications demonstrate that positive autocorrelations in temporal fluctuations can disrupt predator-prey coexistence, fluctuations in log-fecundity can facilitate persistence in structured populations, and long-lived, relatively sedentary competing populations are likely to coexist in spatially and temporally heterogenous environments.  相似文献   

18.
Kreth J  Merritt J  Shi W  Qi F 《Journal of bacteriology》2005,187(21):7193-7203
The human mucosal surface is colonized by the indigenous microflora, which normally maintains an ecological balance among different species. Certain environmental or biological factors, however, may trigger disruption of this balance, leading to microbial diseases. In this study, we used two oral bacterial species, Streptococcus mutans and Streptococcus sanguinis (formerly S. sanguis), as a model to probe the possible mechanisms of competition/coexistence between different species which occupy the same ecological niche. We show that the two species engage in a multitude of antagonistic interactions temporally and spatially; occupation of a niche by one species precludes colonization by the other, while simultaneous colonization by both species results in coexistence. Environmental conditions, such as cell density, nutritional availability, and pH, play important roles in determining the outcome of these interactions. Genetic and biochemical analyses reveal that these interspecies interactions are possibly mediated through a well-regulated production of chemicals, such as bacteriocins (produced by S. mutans) and hydrogen peroxide (produced by S. sanguinis). Consistent with the phenotypic characteristics, production of bacteriocins and H2O2 are regulated by environmental conditions, as well as by juxtaposition of the two species. These sophisticated interspecies interactions could play an essential part in balancing competition/coexistence within multispecies microbial communities.  相似文献   

19.
Megachile Latreille is a conspicuous genus of solitary bees distributed worldwide. However, the biology of tropical species is still little known. We present data on biology of Megachile brasiliensis Data Torre, Megachile sejuncta Cockerell and Megachile stilbonotaspis Moure found in two remnants of eastern Amazonian forest in northeastern Brazil. The study was conducted using the trap-nest methodology in two different areas during four periods. We collected a total of 24 nests of M. brasiliensis, 26 of M. sejuncta and 28 of M. stilbonotaspis. The differential abundance of collected nests may reflect the population size in each sampled place. The nesting activity was concentrated mainly between July and January and species presented a multivoltine pattern, except for M. sejuncta, which was partly univoltine. Assessed pollen use showed a predominant use of Attalea sp. (Arecaceae) and, for M. stilbonotaspis, Tylesia sp. and Lepidaploa sp. (Asteraceae). Babassu is a very common palm in the studied areas and the studied species seem to have a strong link with it. We also reported change of pollen use by M. sejuncta, probably due to competition with M. brasiliensis, which may have influenced the biased sex ratio observed in M. sejuncta toward males. Parasites reported here were also recorded for other Megachile species, such as Coelioxys, Brachymeria, Meloidae and Pyralidae species. Mites were observed in association with M. stilbonotaspis. The data presented here set up a background that encourages new studies on the ecology of these three Amazonian species, providing tools for proper biodiversity management and conservation.  相似文献   

20.
We used live-trapping and foraging to test for the effect of habitat selection and diet on structuring a community of six small mammals and one bird within the Soutpansberg, South Africa. We established grids that straddled adjacent habitats: woodland, rocky hillside, and grassland. Trapping and foraging were used to estimate abundance, habitat use, and species-specific foraging costs. The species with the highest abundance and foraging activity in a habitat, activity time, or food was considered the most efficient and presumed to have a competitive advantage. All species exhibited distinct patterns of spatial and temporal habitat preference which provided the main mechanism of coexistence, followed by diet selection. The study species were organized into three assemblages (α diversity): grassland, Rhabdomys pumilio, Dendromus melanotis, and Mus minutoides.; woodland, Aethomys ineptus and Micaelamys namaquensis; and rock-dwelling, M. namaquensis and Elephantulus myurus. Francolinus natalensis foraged in open rocky areas and under wooded islands within the grassland. Species organization across the habitats suggested that feeding opportunities are available within all habitats; however, distinct habitat preferences resulted from differing foraging aptitudes and efficiencies of the competing species. At Lajuma, species distribution and coexistence are promoted through distinct habitat preferences that were shaped by competition and species-specific foraging costs. The combination of trapping and foraging provided a mechanistic approach that integrates behavior into community ecology by ‘asking’ the animal to reveal its perspective of the environment. Using spatial and temporal foraging decisions—as behavioral indicators—enables us to guide our understanding for across-taxa species coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号