首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.  相似文献   

2.
The developmental mechanisms of color patterns formation and its evolution remain unclear in reptilian sauropsids. We, therefore, studied the pigment cell mechanisms of stripe pattern formation during embryonic development of the snake Elaphe quadrivirgata. We identified 10 post‐ovipositional embryonic developmental stages based on external morphological characteristics. Examination for the temporal changes in differentiation, distribution, and density of pigment cells during embryonic development revealed that melanophores first appeared in myotome and body cavity but not in skin surface at Stage 5. Epidermal melanophores were first recognized at Stage 7, and dermal melanophores and iridophores appeared in Stage 9. Stripe pattern first appeared to establish at Stage 8 as a spatial density gradient of epidermal melanophores between the regions of future dark brown longitudinal stripes and light colored background. Our study, thus, provides a comprehensive pigment‐cell‐based understanding of stripe pattern formation during embryonic development. We briefly discuss the importance of the gene expression studies by considering the biologically relevant theoretical models with standard developmental staging for understanding reptilian color pattern evolution.  相似文献   

3.
Changing clothes easily: connexin41.8 regulates skin pattern variation   总被引:1,自引:0,他引:1  
The skin patterns of animals are very important for their survival, yet the mechanisms involved in skin pattern formation remain unresolved. Turing's reaction-diffusion model presents a well-known mathematical explanation of how animal skin patterns are formed, and this model can predict various animal patterns that are observed in nature. In this study, we used transgenic zebrafish to generate various artificial skin patterns including a narrow stripe with a wide interstripe, a narrow stripe with a narrow interstripe, a labyrinth, and a 'leopard' pattern (or donut-like ring pattern). In this process, connexin41.8 (or its mutant form) was ectopically expressed using the mitfa promoter. Specifically, the leopard pattern was generated as predicted by Turing's model. Our results demonstrate that the pigment cells in animal skin have the potential and plasticity to establish various patterns and that the reaction-diffusion principle can predict skin patterns of animals.  相似文献   

4.
Epidermal reconstructs incorporating pigment cells have been used in vitro over the last decade to study the physiology of the epidermal melanin unit. However, the major limitation of this technology is the duration of the assays, which need to be completed within 2–3 weeks to obviate the problem of epidermal senescence and excessive terminal differentiation. This becomes a major problem for studying long‐term biological phenomena in photoprotection and epidermal skin cancers. We report here a simplified surgical technique in immunotolerant mice allowing long‐term studies. The creation of a vascularized mouse skin flap is the key point of the surgical procedure. Long‐term pigmentation of the xenografts seemed macroscopically successful, but surprisingly microscopy at 11 and 16 weeks postgrafting showed mostly dermal pigment aggregates and rare Melan‐A positive dermal and epidermal pigment cells. In the same reconstructs maintained in vitro, dermal pigment and dermal pigment cells were never noted. It could be speculated that in our model, the colonization of the xenografted dead human dermis by murine cells influences melanocyte survival.  相似文献   

5.
Epidermal reconstructs incorporating pigment cells have been used in vitro over the last decade to study the physiology of the epidermal melanin unit. However, the major limitation of this technology is the duration of the assays, which need to be completed within 2-3 weeks to obviate the problem of epidermal senescence and excessive terminal differentiation. This becomes a major problem for studying long-term biological phenomena in photoprotection and epidermal skin cancers. We report here a simplified surgical technique in immunotolerant mice allowing long-term studies. The creation of a vascularized mouse skin flap is the key point of the surgical procedure. Long-term pigmentation of the xenografts seemed macroscopically successful, but surprisingly microscopy at 11 and 16 weeks postgrafting showed mostly dermal pigment aggregates and rare Melan-A positive dermal and epidermal pigment cells. In the same reconstructs maintained in vitro, dermal pigment and dermal pigment cells were never noted. It could be speculated that in our model, the colonization of the xenografted dead human dermis by murine cells influences melanocyte survival.  相似文献   

6.
7.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

8.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

9.
Yoshida K  Kitahara S  Ito D  Kondo T 《Phytochemistry》2006,67(10):992-998
The Himalayan blue poppy, Meconopsis grandis, has sky blue-colored petals, although the anthocyanidin nucleus of the petal pigment is cyanidin. The blue color development in this blue poppy involving ferric ions was therefore studied. We analyzed the vacuolar pH, and the organic and inorganic components of the colored cells. A direct measurement by a proton-selective microelectrode revealed that the vacuolar pH value was 4.8. The concentrations of the total anthocyanins in the colored cells were around 5mM, and ca. three times more concentrated flavonols were detected. Fe was detected by atomic analysis of the colored cells, and the ratio of Fe to anthocyanins was ca. 0.8 eq. By mixing the anthocyanin, flavonol and metal ion components in a buffered aq. solution at pH 5.0, we were able to reproduce the same blue color; the visible absorption spectrum and CD were identical to those in the petals, with Fe(3+), Mg(2+) and flavonol being essential for the blue color. The blue pigment in Meconopsis should be a new type of metal complex pigment that is different from a stoichiometric supramolecular pigment such as commelinin or protocyanin.  相似文献   

10.
We study a three-variable Turing system with two kinds of cells and a diffusive chemical, considering the formation and maintenance of fish skin patterns with multiple pigment cells. The two types of cells are produced from undifferentiated cells. They inhibit the supply rate of the other cell type, forming local clusters of the same cell type. In addition, the cells of one type can be maintained only in the presence of a diffusive chemical produced by the other cell type, resulting in the coexistence of two cell types in heterogeneous spatial patterns. We assume linear interaction among cells and the chemical, and cell supply rates constrained to be positive or zero. We derive the condition for diffusion-driven instability. In one-dimensional model, we examine how the wavelength of the periodic pattern depends on parameters. In the two-dimensional model, we study the condition for spot, stripe or reversed spot pattern to emerge (pattern selection). We discuss heuristic criteria for the pattern selection.  相似文献   

11.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

12.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

13.
Antigen-specific CD8+T lymphocytes play an important role in defense against cutaneous microbial infection and skin cancer as well as in the pathophysiology of autoimmune skin disease such as lupus erythematodes and vitiligo. We have explored the role of CD8+ cytotoxic T lymphocytes (CTL) in an experimental mouse model of vitiligo, a pigmentation disorder characterized by focal loss of melanocytes in the skin. Using genetic immunization techniques we found that pigment cells in the epidermis can be destroyed by CD8+ T cells specifically recognizing a single H2-Kb-binding peptide derived from the model melanocytic self antigen tyrosinase-related protein 2 (TRP2), a melanosomal enzyme involved in pigment synthesis. Experimental evidence suggests that peripheral tolerance of pigment cell-specific cytotoxic CD8+T cells is regulated in two steps. In the induction phase, stimulation and expansion of these T cells in vivo strictly depends on CD4+ T cell help. In the effector phase, autoimmune destruction of melanocytes in the skin depends on local inflammation facilitating the migration of T cells into the epidermis and supporting effector functions. Our results suggest that accidental stimulation of CD8+ CTL recognizing MHC class I-binding peptides derived from melanocytic proteins in the context of an inflammatory skin disease may play an important role in the pathophysiology of vitiligo. Further investigations will address the role of chemokines, chemokine receptors and adhesion molecules in this experimental system and will reveal the role of keratinocytes and Langerhans cells in regulating cutaneous CD8+ T cell responses.  相似文献   

14.
Genetics and evolution of pigment patterns in fish   总被引:8,自引:0,他引:8  
Vertebrate pigment patterns are both beautiful and fascinating. In mammals and birds, pigment patterns are likely to reflect the spatial regulation of melanocyte physiology, via alteration of the colour-type of the melanin synthesized. In fish, however, pigment patterns predominantly result from positioning of differently coloured chromatophores. Theoretically, pigment cell patterning might result from long-range patterning mechanisms, from local environmental cues, or from interactions between neighbouring chromatophores. Recent studies in two fish genetic model systems have made progress in understanding pigment pattern formation. In embryos, the limited evidence to date implicates local cues and chromatophore interactions in pigment patterning. In adults, de novo generation of chromatophores and cell-cell interactions between chromatophore types play critical roles in generating striped patterns; orientation of the stripes may well depend upon environmental cues mediated by underlying tissues. Further genetic screens, coupled with the routine characterization of critical gene products, promises a quantitative understanding of how striped patterns are generated in the zebrafish system. Initial 'evo-devo' studies indicate how fish pigment patterns may evolve and will become more complete as the developmental genetics is integrated with theoretical modelling.  相似文献   

15.
Pigment production from tryptophan by an Achromobacter species   总被引:1,自引:1,他引:0       下载免费PDF全文
Duerre, John A. (University of North Dakota, Grand Forks), and Patrick J. Buckley. Pigment production from tryptophan by an Achromobacter species. J. Bacteriol. 90:1686-1691. 1965.-A microorganism was isolated from the soil near the University of North Dakota. Biochemical and morphological characteristics indicated that this organism would best be classified as a member of the family Achromobacteraceae, genus Achromobacter, species unknown. The organism produced a red pigment when grown in a medium containing yeast extract and tryptophan. The pH optimum for pigment production was about 8.0 and the optimal temperature was 25 C. During a study of the nutritional requirements for growth and pigment production, it was found that the organism would grow and produce pigment in a medium containing tryptophan and nucleosides, but the rate of both growth and pigment formation in this medium was slower than that observed with tryptophan and yeast extract. The organism grew well in the presence of acid-hydrolyzed casein and nucleosides without producing pigment, indicating that the pigment is not necessary for growth. Resting-cell experiments definitely established tryptophan as the sole exogenous requirement for pigment production. The pigment was extracted from yeast extract-tryptophan medium with chloroform. Thin layer chromatographic analysis of the crude pigment extracted from this medium revealed the presence of two other pigments in addition to the major red pigment. One of these was a highly fluorescent orange pigment and the other a pink pigment. Only the red pigment was produced by resting cells in the presence of tryptophan alone. This pigment served as an electron acceptor when coupled with formic dehydrogenase, indicating its possible function as an oxidation-reduction pigment. The oxidized pigment had absorption peaks at 506 and 304 mmu. The peak at 506 mmu disappeared upon reduction with sodium sulfite. Shaking the reduced pigment in air proved to be an unsatisfactory method for returning the reduced pigment to the oxidized, colored state.  相似文献   

16.
17.
Color patterns of butterfly wings are composed of single color points represented by each scale. In the case of Precis coenia, at the end of pupal development, different types of pigments are synthesized sequentially in the differently colored scales beginning with white (pterins) followed by red (ommatins) and then black (melanin). In order to explain how formation of these different colors is regulated, we examined the expression of an mRNA-encoding guanosine triphosphate-cyclohydrolase I (GTP-CH I; EC 3.5.4.16), the first key enzyme in the biosynthesis of pteridines, during pigment formation in the wings of P. coenia. The strongest positive signal was recognized around pigment formation one day before butterfly emergence. This GTP-CH I gene expression is paralleled by GTP-CH I enzyme activity measured in wing extracts. We also investigated the effect of 20-hydroxyecdysone on the expression of GTP-CH I mRNA and the enzyme activity during color formation. The results strongly suggest that the onset and duration of the expression of a GTP-CH I mRNA is triggered by a declining ecdysteroid hormone titer during late pupal development.  相似文献   

18.
SYNOPSIS Pigment cells and their synthesized products play animportant functional role in the skin of most all vertebrates,from cyclostomes to man Both dermal and epidermal pigment cellsfunction in physiological and morphological color changes andprovide the cellular basis for vertebrate pigment patterns anddifferences in racial coloration Epidermal melanization is ofparticular importance in homeotherms in the regulation of seasonalpelage and feather color changes In addition, melanin pigmentation may have a photoprotective function, influence vitaminD synthesis in the skin protect or influence neivous systemfunction, affect heat absorption and consenition, play an intracellularhomeostatic role in the skin and (by leucocytic transport) elsewherein the bodv and provide a structural element to the integumentA consideration of the comparative evolution of the vertebratelntegumental pigmental) system may be necessary for a pioperinterpretation of the supposed roles ot melanin and other lntegumentalpigments  相似文献   

19.
菊花花色遗传及花色嵌合体发现   总被引:13,自引:0,他引:13  
栗茂腾  余龙江  王丽梅  刘建民  雷呈 《遗传》2005,27(6):948-952
对开黄花菊花和开白花菊花材料分别和开红花菊花材料进行了正反交,结果表明,花色遗传比较复杂, 在以红花材料作为母本组合中表现为比较明显的偏母性遗传特征,而以黄花和白花材料为母本则不表现偏母性特征;除此之外,菊花花色遗传还表现出不完全显性和镶嵌显性的特点。在黄花材料3501和红花材料3509所得到杂种中发现了2个分枝出现花色嵌合体的现象,该嵌合体特征是花一边为红色,而另一边则出现镶嵌显性的现象。染色体分析表明,不同颜色嵌合体花瓣的染色体数目都是36条,因此,实验所得到的花色嵌合体不是由染色体数目变化造成的,而有可能是转座子插入影响色素合成基因造成的。  相似文献   

20.
We have purified a new violet pigment derived from Shewanella violacea DSS12 to determine its chemical structure. The pigment colored blue in tetrahydrofuran (THF) or chloroform and showed a broad absorption spectrum from 500 to 700 nm. X-ray diffraction analysis of single crystals showed that the chemical structure of this pigment was 5,5′-didodecylamino-4,4′-dihydroxy-3,3′-diazodiphenoquinone-(2,2′), containing the same chromophore as an indigoidine known as microbial blue pigment. The violet color of this pigment was due to hypsochromic shift (blue shift) caused by the side-by-side orientation of this pigment molecule, revealed by X-ray structural analyses of a single crystal. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号