首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin (CaM)-sensitive adenylate cyclase has recently been purified extensively from bovine brain. In this study, the sensitivity of the CaM-sensitive adenylate cyclase to adenosine and adenosine analogs was examined. The highly purified enzyme preparation retained sensitivity to inhibition by adenosine and adenosine analogs with ribose ring modifications, but not to those with purine ring modifications. Adenosine inhibition of this enzyme was not dependent on GTP and was noncompetitive with respect to ATP. Enzyme that had been dissociated from functional guanine nucleotide binding protein interactions by gel filtration in the presence of the zwitterionic detergent 3-[3-(cholamidopropyl)-dimethylammonio]-propanesulfonate and Mn2+ retained sensitivity to adenosine inhibition. The Ki for adenosine inhibition of the CaM-sensitive adenylate cyclase was approximately 2.6 X 10(-4) M. 5'-Guanylylimidodiphosphate and CaM did not affect the Ki of 3'-deoxyadenosine for the enzyme, but the presence of Ca2+ in the millimolar range raised the Ki by a factor of 5. These results show that the CaM-sensitive form of adenylate cyclase from bovine brain is subject to adenosine inhibition, and strongly suggest that this inhibition is due to interaction of ligands with a purine-specific ("P") site located on the catalytic subunit of the enzyme.  相似文献   

2.
Abstract: Adenylate cyclase was solubilized from washed paniculate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60°C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

3.
Transient States of Adenylate Cyclase in Brain Membranes   总被引:3,自引:1,他引:2  
Basal activity of adenylate cyclase from the amygdala of sheep brain and the neostriatum of turkey brain decays in two phases at 37 degrees C. The first phase is rapid (t1/2 = 2.3 +/- 0.3 min) and results in the loss of 60-70% of basal activity. The second phase is slow (t1/2 approximately 100 min) during which time the catalytic units denature irreversibly. The GTP analogue guanosine-5' (beta-gamma imino) triphosphate (p[NH]ppG) prevents the rapid decay by stabilizing the enzyme at its initial level of activity and also reactivates the enzyme to initial levels during or immediately following the early phase, indicating that denaturation of neither the guanylnucleotide units nor the catalytic units causes the rapid decline in basal activity. Activation by p[NH]ppG is rapid at 37 degrees C, but the binding of p[NH]ppG to the guanylnucleotide subunit also occurs at nonactivatory temperatures. This is determined by the protection of catalytic units from thermal or N-ethylmaleimide inactivation after extensive washing. Thus, at 25 degrees C all of the catalytic units can be stabilized by saturating p[NH]ppG concentrations. At 0 degree C, 35% of the catalytic units can be stabilized by saturating p[NH]ppG concentrations within 30 s. The half-saturation constant for the binding of p[NH]ppG at 0 degree C is identical to that derived in an assay at 37 degrees C, or after an incubation of the membranes for 10 min at 45 degrees C, when the process of thermal denaturation is 80% complete (K1/2 approximately 3 +/- 2 microM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Abstract. Hydrophobic chromatography of detergent-solubilized rat brain adenylate cyclase on dodecyl-Sepharose produced a species that was soluble in the absence of detergent and could be manipulated like a conventional hydrophilic protein. Sevenfold purification was achieved by this technique. Further purification could then be effected by affinity chromatography on ATP-Sepharose. The purified enzyme was no longer sensitive to fluoride or guanyl nucleotides. No interaction of brain adenylate cyclase was observed with immobilized triazinyl dyes such as Cibacron Blue 3GA nor with concanavalin A-Sepharose. The molecular weight of the fluoride-activated catalytic complex in a freeze-dried membrane preparation was estimated to be 133,000 by irradiation inactivation.  相似文献   

5.
The interaction between the Ca2+-binding protein, calmodulin, and guanyl nucleotides was investigated in a rat striatal particulate fraction. We found that the ability of calmodulin to stimulate adenylate cyclase in the presence of guanyl nucleotides depends upon the type and concentration of the guanyl nucleotide. Adenylate cyclase activity measured in the presence of calmodulin and GTP reflected additivity at every concentration of these reactants. On the contrary, when the activating guanyl nucleotide was the nonhydrolyzable analog of GTP, guanosine-5'-(beta,gamma-imido)triphosphate (GppNHp), calmodulin could further activate adenylate cyclase only at concentrations less than 0.2 microM GppNHp. Kinetic analysis of adenylate cyclase by GppNHp was compatible with a model of two components of adenylate cyclase activity, with over a 100-fold difference in sensitivity for GppNHp. The component with the higher affinity for GppNHp was competitively stimulated by calmodulin. The additivity between calmodulin and GTP in the striatal particulate fraction suggests that they stimulate different components of cyclase activity. The calmodulin-stimulatable component constituted 60% of the total activity. Our two-component model does not delineate, at this point, whether there are two separate catalytic subunits or one catalytic subunit with two GTP-binding proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments.  相似文献   

7.
Type I Calmodulin-Sensitive Adenylyl Cyclase Is Neural Specific   总被引:8,自引:2,他引:6  
Abstract: The distribution of type I calmodulin-sensitive adenylyl cyclase in bovine and rat tissues was examined by northern blot analysis and in situ hybridization. Northern blot analysis using poly(A)+-selected RNA from various bovine tissues indicated that mRNA for type I adenylyl cyclase was found only in brain, retina, and adrenal medulla, suggesting that this enzyme is neural specific. In situ hybridization studies using bovine, rabbit, and rat retina indicated that mRNA for type I adenylyl cyclase is found in all three nuclear layers of the neural retina and is particularly abundant in the inner segment of the photoreceptor cells. The neural-specific distribution of type I adenylyl cyclase mRNA and its restricted expression in areas of brain implicated in neuroplasticity are consistent with the proposal that this enzyme plays an important role in various neuronal functions including learning and memory.  相似文献   

8.
Five GTP binding proteins in rat cerebral cortex synaptic membranes were identified by photoaffinity labelling with [3H] or [32P](P3-azido-anilido)-P1-5' GTP (AAGTP). When AAGTP-treated membranes were incubated with colchicine or vinblastine and subsequently washed, a single AAGTP-labelled protein of 42 kD was released into the supernatant. About 30% of the total labelled 42-kD protein was released into supernatants from membranes pretreated with colchicine or vinblastine compared with 15% released from control membranes. The amount of adenylate cyclase regulatory subunit (G unit) remaining in these membranes was assessed with reconstitution studies after inactivating the adenylate cyclase catalytic moiety with N-ethylmaleimide (NEM). Forty to fifty percent of functional G units were lost from membranes treated with colchicine prior to washing. This 40-50% loss of functional G unit after colchicine treatment corresponds to the previously observed 42% loss of NaF and guanylyl-5'-imidodiphosphate [Gpp(NH)p]-activated adenylate cyclase. Release of the AAGTP-labelled 42-kD protein from colchicine-treated synaptic membranes is double that from lumicolchicine-treated membranes. This colchicine-mediated release of 42-kD protein correlates with a doubling of functional G unit released from synaptic membranes after colchicine treatment. These findings suggest multiple populations of the G unit within the synaptic plasma membrane, some of which may interact with cytoskeletal components.  相似文献   

9.
Abstract: 4β-Phorbol 12-myristate 13-acetate (PMA), added to a lysed mitochondrial fraction of rat striatum, stimulates adenylate cyclase activity with an apparent time lag of ~30 s. Half-maximal and maximal enzyme stimulations are obtained with 8 and 200 nM PMA, respectively. The PMA stimulation is GTP dependent, reaching a maximum of ~60% at 50 μ.M GTP, and is associated with disappearance of the enzyme inhibition induced by micromolar concentrations of GTP. Enhancement of enzyme activity by cholera toxin and 3,4-dihydroxyphenylethylamine is amplified by PMA only at micromolar concentrations of GTP. PMA does not affect the enzyme stimulation by forskolin but reverses the inhibition of forskolin-stimulated enzyme by GTP. When guanyl-5′-yl-imidodiphosphate is substituted for GTP, PMA does not modify adenylate cyclase activity. Enzyme inhibition by acetylcholine, Leu-enkephalin, and R(-)N6-(2-phenylisopropyl)adenosine is magnified by PMA. Stimulation of adenylate cyclase by PMA is markedly reduced following EGTA treatment, is not observed when adenyl-5′-yl-imidodiphosphate is substituted for ATP as substrate for adenylate cyclase, and is enhanced by l-α-phosphatidyl-l-serine. Like PMA, 4β-phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol stimulate striatal adenylate cyclase, whereas 4β-phorbol and 4β-phorbol 13-acetate are ineffective. The results indicate that phorbol esters increase striatal adenylate cyclase activity by reducing the GTP-induced inhibition of the enzyme, presumably as a result of protein kinase C activation.  相似文献   

10.
Abstract: Adenylate cyclase activity in the particulate fraction from rat brain was markedly enhanced by the cytoplasmic fraction, which itself contained negligible enzyme activity, indicating the presence of some stimulatory factor(s) in the supernatant. Activation of adenylate cyclase was dependent on the supernatant concentration up to 1 mgiml, but higher concentration of the supernatant did not produce further activation of the enzyme. The supernatant retained its stimulatory activity after boiling for 5 min, extensive dialysis, and phospholipase A and DNAase treatments, but was completely inactivated by digestion with trypsin. Ability of the supernatant to activate adenylate cyclase was low during fetal life, increased severalfold neonatally, and declined somewhat thereafter to an adult level. Adenylate cyclase in the particulate fraction from 2-day-old rat brain was also activated by GTP, calcium-dependent regulator (CDR) of cyclic AMP phosphodiesterase in the presence of 100 pM-Ca1, and by NaF. The supernatant produced additive activation of the enzyme with NaF but not with GTP or CDR, suggesting a common site of action of the supernatant factor(s) and the latter two agents. DEAE-cellulose chromatography of the boiled supernatant resolved the heat-stable proteins into several peaks. Adenylate cyclase activator eluted in two distinct peaks, one of which also contained CDR activity. It is concluded that rat brain supernatant contains some factor in addition to CDR which activates particulate adenylate cyclase.  相似文献   

11.
Adenylate cyclase activity in bovine cerebellar membranes is regulated by calmodulin, forskolin, and both stimulatory (Ns) and inhibitory (Ni) guanine nucleotide-binding components. The susceptibility of the enzyme to chymotrypsin proteolysis was used as a probe of structure-function relationships for these different regulatory pathways. Pretreatment of membranes with low concentrations of chymotrypsin (1-2 micrograms/ml) caused a three- to fourfold increase in basal adenylate cyclase activity and abolished the Ca2+-dependent activation of the enzyme by calmodulin. In contrast, the stimulation of the enzyme by GTP plus isoproterenol was strongly potentiated after protease treatment, an effect that mimics the synergistic activation of adenylate cyclase by Ns and calmodulin in unproteolyzed membranes. Limited proteolysis revealed low- and high-affinity components in the activation of adenylate cyclase by forskolin. The low-affinity component was readily lost on proteolysis, together with calmodulin stimulation of the enzyme. The activation via the high-affinity component was resistant to proteolysis and nonadditive with the Ns-mediated activation of the enzyme, suggesting that both effectors utilize a common pathway. The inhibitory effect of low concentrations (10(-7) M) of guanyl-5'-yl imidodiphosphate [Gpp(NH)p] on forskolin-activated adenylate cyclase was retained after limited proteolysis of the membranes, indicating that the proteolytic activation does not result from an impairment of the Ni subunit. Moreover, in the rat cerebellum, proteolysis as well as calmodulin was found to enhance strongly the inhibitory effect of Gpp(NH)p on basal adenylate cyclase activity. Our results suggest that calmodulin and Ns/Ni interact with two structurally distinct but allosterically linked domains of the enzyme. Both domains appear to be involved in the mode of action of forskolin.  相似文献   

12.
Adenylate cyclase in homogenates of Drosophila melanogaster is heterogeneous with respect to its affinity toward MgATP and its subcellular distribution. Km values for MgATP range, under similar assay conditions, from approximately 10(-5) M to approximately 10(-3) M, depending on the body region and on the subcellular localization of the enzyme. The majority of the enzyme in whole-body preparations is particulate, but various body regions differ in the relative proportion of the soluble enzyme. The memory mutant rutabaga lacks up to 35% of the total particulate activity. Even ligands that stimulate directly the catalytic subunit are incapable of bringing the activity of the mutant's enzyme to normal levels. The defect is differentially pronounced in various body parts and is associated with an altered responsiveness of the enzyme to Mg2+, to Ca2+, and to forskolin. It is suggested that rutabaga is lesioned in a subpopulation, or a functional state, of adenylate cyclase, which may play a role in memory formation.  相似文献   

13.
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

14.
Corticotropin-releasing factor (CRF) stimulates rat retinal adenylate cyclase activity in a concentration-dependent manner. The half-maximal effect is obtained at 50 nM CRF and the maximal stimulation corresponds to approximately 90% increase of basal enzyme activity. The CRF effect is counteracted by the CRF antagonist alpha-helical CRF 9-41 with a Ki value of 40 nM. Other CRF-like peptides such as sauvagine and urotensin I are as effective as CRF with a rank order of potency of urotensin I greater than or equal to sauvagine greater than CRF. The sauvagine and urotensin I effects are not additive with that elicited by CRF. Moreover, the CRF stimulation is not additive with the increase of enzyme activity produced by vasoactive intestinal peptide or dopamine. The CRF effect is independent of the concentration of free Ca2+, is optimal at 5-10 mM MgCl2, and requires GTP. The results indicate that rat retinal adenylate cyclase is modulated by CRF via a receptor-mediated mechanism.  相似文献   

15.
Abstract: Plasma membranes from rat striatum contain adenylate cyclase activity that is subject to dual regulation by GTP. Low concentrations (up to 30 nM) of the nucleotide increase activity whereas higher concentrations evoke a steady decline in activity; such behavior characterizes dually regulated adenylate cyclase systems. The opiates, morphine sulfate and D-Ala-Met-enkephalin, produce naloxone-reversible inhibition of the enzyme that is dependent on "inhibitory concentrations" of GTP (above 50 nM). In the absence of GTP no inhibition is observed. Sodium ions decrease the inhibition of activity promoted by GTP alone, but amplify the degree of inhibition seen in the presence of the opiates and GTP. The potencies of the opiates in mediating these effects mirror their affinities for 8 opiate receptors in striatum. It is suggested that this action of the opiates may represent their primary action in striatum.  相似文献   

16.
We investigated the effect of acetylcholine (ACh) on the activation of adenylate cyclase by dopamine (DA) in a lysed synaptosomal preparation from rat striatum. ACh reduced both basal and the DA-activated adenylate cyclase with an apparent IC50 of approximately 1 microM. From a kinetic analysis it appeared that ACh reduced the Vmax for activation by DA but not the activation constant for DA. For most preparations the Vmax was reduced by 30-40%. The presence of atropine did not affect the activation of the enzyme by DA but it blocked the inhibition by ACh. Following 6-hydroxydopamine lesion of the nigrostriatal pathway, the enzyme became supersensitive to activation by DA and also more sensitive to inhibition by ACh. Inhibition of adenylate cyclase by ACh appeared to be rather specific for activation by DA, as ACh had no effect on activation of adenylate cyclase by the adenosine analogue N6-(L-2-phenylisopropyl)adenosine. These results indicate that some striatal muscarinic and dopaminergic receptors are probably coupled to the same adenylate cyclase domain. Moreover, they suggest a biochemical model for the dynamic balance of cholinergic and dopaminergic neurons that innervate the striatum.  相似文献   

17.
Ethanol increases the activity of "basal," guanine nucleotide- and dopamine-stimulated adenylate cyclase in mouse striatum. In contrast, ethanol, in vitro, did not modify the inhibition of striatal adenylate cyclase activity by opiates (morphine or [D-Ala2,D-Leu5] enkephalin). Following chronic in vivo ethanol treatment of mice, there was also no change in the character of opiate inhibition of striatal adenylate cyclase activity. Since ethanol, in vitro, does decrease striatal opiate receptor binding, the results suggest that the changes in affinity detected by ligand binding studies are not relevant for receptor-coupled adenylate cyclase activity, or that opiate receptor binding and opiate regulation of adenylate cyclase can be modulated independently. The selective effects of ethanol on systems that modulate adenylate cyclase activity may produce imbalances in neuronal function during in vivo ethanol exposure.  相似文献   

18.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   

19.
We have developed a method to ADP-ribosylate the stimulatory guanine nucleotide-binding protein of adenylate cyclase (GS) in brain membranes by using cholera toxin. In particular, we used isonicotinic acid hydrazide and 3-acetylpyridine adenine dinucleotide to inhibit the potent NAD-glycohydrolase activity of brain membranes, and we used the detergent Triton X-100 (at 0.1%) to improve the accessibility of the toxin and guanine nucleotides used for supporting the ADP-ribosylation. This method reveals that GS is a very abundant protein in membranes derived from calf brain (approximately 30 pmol/mg of protein). In brain, GS exists in large excess over the previously reported amount of the adenylate cyclase catalytic subunit. The modification of GS with an ADP-ribosyl residue (a) elicits a four- to fivefold activation of adenylate cyclase by GTP, (b) increases the stabilization of adenylate cyclase by GTP, and (c) reduces adenylate cyclase activation by fluoride but does not change basal activity, activation by guanosine 5'-(beta, gamma-imido)triphosphate, or the sensitivity of adenylate cyclase to heat-induced denaturation. A correlation between ADP-ribosylation and the alterations in the activation of adenylate cyclase by guanine nucleotides and by fluoride is presented.  相似文献   

20.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号