首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific set of reactions that lead to the synthesis of benzoic acid in plants is still unclear, and even the subcellular compartment in which these reactions occur is unknown. Biosynthesis of both vegetative tissues and seeds of Arabidopsis thaliana contain a class of defense compounds termed glucosinolates, but only the seeds synthesize and store high levels of two glucosinolate compounds that contain a benzoic acid moiety. To identify genes involved in the synthesis of benzoic acid (directly or via benzaldehyde) in Arabidopsis , we analysed the levels of benzoylated glucosinolates in several lines that carry mutations in genes with homology to Pseudomonas fluorescens feruloyl-CoA hydratase, an enzyme that converts feruloyl-CoA to vanillin and acetyl-CoA, a reaction analogous to the conversion of cinnamoyl-CoA to benzaldehyde. We show here that mutations in the gene At5g65940 , previously shown to encode a peroxisomal protein with β-hydroxyisobutyryl-CoA hydrolase activity and designated as Chy1 , lead to a deficiency of benzoic acid-containing glucosinolates in the seeds. Furthermore, Chy1 exhibits cinnamoyl-CoA hydrolase activity with a Km of 2.9 μ m . Our findings suggest that at least a part of benzoic acid biosynthesis occurs in the peroxisomes, although the specific pathway that leads to benzoic acid and the specific biochemical role of Chy1 remain unclear.  相似文献   

2.
Carnitine palmitoyltransferase I (CPT I) catalyzes the formation of acylcarnitine, the first step in the oxidation of long-chain fatty acids in mitochondria. The enzyme exists as liver (L-CPT I) and muscle (M-CPT I) isoforms that are encoded by separate genes. Genetic deficiency of L-CPT I, which has been reported in 16 patients from 13 families, is characterized by episodes of hypoketotic hypoglycemia beginning in early childhood and is usually associated with fasting or illness. To date, only two mutations associated with L-CPT I deficiency have been reported. In the present study we have identified and characterized the mutations underlying L-CPT I deficiency in six patients: five with classic symptoms of L-CPT I deficiency and one with symptoms that have not previously been associated with this disorder (muscle cramps and pain). Transfection of the mutant L-CPT I cDNAs in COS cells resulted in L-CPT I mRNA levels that were comparable to those expressed from the wild-type construct. Western blotting revealed lower levels of each of the mutant proteins, indicating that the low enzyme activity associated with these mutations was due, at least in part, to protein instability. The patient with atypical symptoms had approximately 20% of normal L-CPT I activity and was homozygous for a mutation (c.1436C-->T) that substituted leucine for proline at codon 479. Assays performed with his cultured skin fibroblasts indicated that this mutation confers partial resistance to the inhibitory effects of malonyl-CoA. The demonstration of L-CPT I deficiency in this patient suggests that the spectrum of clinical sequelae associated with loss or alteration of L-CPT I function may be broader than was previously recognized.  相似文献   

3.
Long chain fatty acids are translocated as carnitine esters across the mitochondrial inner membrane by carnitine acylcarnitine translocase (CACT). We report functional studies on the mutant CACT proteins from a severe and a mild patient with CACT deficiency. CACT activities in fibroblasts of both patients were markedly deficient with some residual activity (<1%) in the milder patient. Palmitate oxidation activity in cells from the severe patient was less than 5% but in the milder patient approximately 27% residual activity was found. Sequencing of the CACT cDNAs revealed a c.241G>A (G81R) in the severe and a c.955insC mutation (C-terminal extension of 21 amino acids (CACT(+21aa)) in the milder patient. The effect of both mutations on the protein was studied in a sensitive expression system based on the ability of human CACT to functionally complement a CACT-deletion strain of yeast. Expression in this strain revealed significant residual activity for CACT(+21aa), while the CACT(G81R) was inactive.  相似文献   

4.
D-bifunctional protein (DBP) deficiency is an autosomal recessive inborn error of peroxisomal fatty acid oxidation. The clinical presentation of DBP deficiency is usually very severe, but a few patients with a relatively mild presentation have been identified. In this article, we report the mutational spectrum of DBP deficiency on the basis of molecular analysis in 110 patients. We identified 61 different mutations by DBP cDNA analysis, 48 of which have not been reported previously. The predicted effects of the different disease-causing amino acid changes on protein structure were determined using the crystal structures of the (3R)-hydroxyacyl-coenzyme A (CoA) dehydrogenase unit of rat DBP and the 2-enoyl-CoA hydratase 2 unit and liganded sterol carrier protein 2-like unit of human DBP. The effects ranged from the replacement of catalytic amino acid residues or residues in direct contact with the substrate or cofactor to disturbances of protein folding or dimerization of the subunits. To study whether there is a genotype-phenotype correlation for DBP deficiency, these structure-based analyses were combined with extensive biochemical analyses of patient material (cultured skin fibroblasts and plasma) and available clinical information on the patients. We found that the effect of the mutations identified in patients with a relatively mild clinical and biochemical presentation was less detrimental to the protein structure than the effect of mutations identified in those with a very severe presentation. These results suggest that the amount of residual DBP activity correlates with the severity of the phenotype. From our data, we conclude that, on the basis of the predicted effect of the mutations on protein structure, a genotype-phenotype correlation exists for DBP deficiency.  相似文献   

5.
Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most frequently diagnosed mitochondrial beta-oxidation defect, and it is potentially fatal. Eighty percent of patients are homozygous for a common mutation, 985A-->G, and a further 18% have this mutation in only one disease allele. In addition, a large number of rare disease-causing mutations have been identified and characterized. There is no clear genotype-phenotype correlation. High 985A-->G carrier frequencies in populations of European descent and the usual avoidance of recurrent disease episodes by patients diagnosed with MCAD deficiency who comply with a simple dietary treatment suggest that MCAD deficiency is a candidate in prospective screening of newborns. Therefore, several such screening programs employing analysis of acylcarnitines in blood spots by tandem mass spectrometry (MS/MS) are currently used worldwide. No validation of this method by mutation analysis has yet been reported. We investigated for MCAD mutations in newborns from US populations who had been identified by prospective MS/MS-based screening of 930,078 blood spots. An MCAD-deficiency frequency of 1/15,001 was observed. Our mutation analysis shows that the MS/MS-based method is excellent for detection of MCAD deficiency but that the frequency of the 985A-->G mutant allele in newborns with a positive acylcarnitine profile is much lower than that observed in clinically affected patients. Our identification of a new mutation, 199T-->C, which has never been observed in patients with clinically manifested disease but was present in a large proportion of the acylcarnitine-positive samples, may explain this skewed ratio. Overexpression experiments showed that this is a mild folding mutation that exhibits decreased levels of enzyme activity only under stringent conditions. A carrier frequency of 1/500 in the general population makes the 199T-->C mutation one of the three most prevalent mutations in the enzymes of fatty-acid oxidation.  相似文献   

6.
Multiple respiratory chain deficiencies represent a common cause of mitochondrial diseases. We report two novel GFM1 mutations in two unrelated patients with encephalopathy and liver failure respectively. The first patient had intrauterine growth retardation, seizures, encephalopathy and developmental delay. Brain MRI showed hypoplasia of the vermis and severe pontine atrophy of the brainstem that were similar to those reported in patients with mitochondrial translation deficiencies. The second patient had liver failure with hypoglycemia. Respiratory chain analysis showed a complex IV deficiency in muscle of both patients. A 10K SNP genotyping detected several regions of homozygosity in the two patients. In vitro translation deficiency prompted us to study genes involved in mitochondrial translation. Therefore, we sequenced the GFM1 gene, encoding the mitochondrial translation factor EFG1, included in a shared homozygous region and identified two different homozygous mutations (R671C and L398P). Modeling studies of EFG1 protein suggested that the R671C mutation disrupts an inter-subunit interface and could locally destabilize the mutant protein. The second mutation (L398P) disrupted the H-bond network in a rich-beta-sheet domain, and may have a dramatic effect on local structure. GFM1 mutations have been seldom reported and are associated with different clinical presentation. By modeling the structure of the protein and the position of the various mutations we suggest that the clinical phenotypes of the patients could be related to the localization of the mutations.  相似文献   

7.
Acylcarnitines in urine from 45 patients with organic acidemias and fatty acid oxidation disorders were evaluated using ESI-MS/MS. The urinary acylcarnitine profiles in organic acidemias, SCAD deficiency and MCAD deficiency were compatible with blood acylcarnitine profiles, and abnormalities in urinary acylcarnitine profiles in these conditions were enhanced following carnitine loading. Urinary acylcarnitine profiles were not helpful for characterization of long-chain fatty acid disorders, but a combination of urine and blood acylcarnitine analysis was useful for differential diagnosis of carnitine deficit.  相似文献   

8.
Metachromatic leukodystrophy (MLD) is an inherited storage disease caused by deficiency of arylsulfatase A (ARSA). Molecular analysis of the major mutations in the ARSA gene was performed in 10 Ukrainian patients (from 9 families) with MLD. According to the age of onset, late infantile MLD was identified in 3 patients, juvenile MLD in 5 patients, and adult MLD in 2 patients (sibs), respectively. The ARSA activity in the patients was 2-26 nmol/h/mg protein (the normal activity has been established in our laboratory as 111.9 +/- 7.1 nmol/h/mg protein). No correlation between enzyme activity and a clinical course of disease was revealed. The IVS2 + 1 mutation was found at 2 of 20 alleles (in a patient with late infantile form) and the P426L mutation was found at 2 of 20 alleles (in two patients with juvenile form). Thus, the total frequency of these two major mutations in the ARSA gene is 20% in Ukrainian MLD patients.  相似文献   

9.
The carnitine/acylcarnitine carrier (CAC) is a transport protein of the inner mitochondrial membrane that belongs to the mitochondrial carrier protein family. In its cytosolic conformation the carrier consists of a bundle of six transmembrane α-helices, which delimit a water filled cavity opened towards the cytosol and closed towards the matrix by a network of interacting charged residues. Most of the functional data on this transporter come from studies performed with the protein purified from rat liver mitochondria or recombinant proteins from different sources incorporated into phospholipid vesicles (liposomes). The carnitine/acylcarnitine carrier transports carnitine and acylcarnitines with acyl chains of various lengths from 2 to 18 carbon atoms. The mammalian transporter exhibits higher affinity for acylcarnitines with longer carbon chains. The functional data indicate that CAC plays the important function of catalyzing transport of acylcarnitines into the mitochondria in exchange for intramitochondrial free carnitine. This results in net transport of fatty acyl units into the mitochondrial matrix where they are oxidized by the β-oxidation enzymes. The essential role of the transporter in cell metabolism is demonstrated by the fact that alterations of the human gene SLC25A20 coding for CAC are associated with a severe disease known as carnitine carrier deficiency. This autosomal recessive disorder is characterized by life-threatening episodes of coma induced by fasting, cardiomyopathy, liver dysfunction, muscle weakness, respiratory distress and seizures. Until now 35 different mutations of CAC gene have been identified in carnitine carrier deficient patients. Some missense mutations concern residues of the signature motif present in all mitochondrial carriers. Diagnosis of carnitine carrier deficiency requires biochemical and genetic tests; treatment is essentially limited to important dietetic measures. Recently, a pharmacological approach based on the use of statins and/or fibrates for the treatment of CAC-deficient patients with mild phenotype has been proposed.  相似文献   

10.
Cholesteryl ester storage disease, caused by the loss of lysosomal acid ester hydrolase (EC 3.1.1.13), has been previously associated with hyperlipidemia and premature atherosclerosis. We identified a 23-month-old female with cholesteryl ester storage disease and characterized the plasma lipids and lipoproteins in the proband and her family. These studies illustrate several important points about this disease. First, a high index of suspicion is required to diagnose this disease since the major physical manifestation of the disorder, mild hepatomegaly, is subtle. Second, the Type II hyperlipoproteinemia in the proband is paralleled by a reduction in the concentration of high density lipoproteins. Third, analysis of the plasma lipids and lipoproteins in family members revealed both Type II and Type IV hyperlipoproteinemia with an inheritance pattern similar to that of familial combined hyperlipoproteinemia. Fourth, the parents and brother of this patient had 50% normal fibroblast acid ester hydrolase activity. These results raise the possibility that deficiency of the lysosomal acid ester hydrolase may be linked to familial combined hyperlipoproteinemia and that this enzyme deficiency may be more common than previously appreciated.  相似文献   

11.
Cytochrome c oxidase (COX) deficiency is the most common cause of Leigh syndrome (LS). COX consists of ten nuclear-encoded and three mtDNA-encoded structural subunits. Although the nucleotide sequences of all 13 genes are known, no mutation was found in nuclear-encoded subunit genes of COX-deficiency patients. Zhu et al. (1998) and Tiranti et al. (1998) found nine mutations in the surfeit 1 (SURF1) gene in LS families with COX deficiency. The mouse surfeit gene cluster consists of six closely spaced housekeeping genes unrelated by sequence homology. Except for the Surf3 gene, the function is still not known. The juxtaposition of at least five of the surfeit genes is conserved between birds and mammals. We identified two novel mutations of SURF1 in a Japanese LS patient with COX deficiency using direct sequencing analysis. Firstly, a 2-bp deletion at nucleotide position 790 (790delAG) in exon 8 was found, which shifts the reading frame such that the mutant protein has a completely different amino acid sequence from codon 264 to the premature stop codon at 290. Secondly, we found a T-to-G transversion at nucleotide 820, resulting in the substitution of tyrosine by aspartic acid at codon 274 (Y274D). We also studied the parents' genes, and found that the Y274D mutation was in his father and the 790delAG mutation was in his mother heterozygously. Therefore, we concluded that the patient was a compound heterozygote with these mutations. These are the first pathogenetic SURF1 mutations identified in a Japanese family.  相似文献   

12.
Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.  相似文献   

13.
Peroxisomal beta-oxidation proceeds from enoyl-CoA through D-3-hydroxyacyl-CoA to 3-ketoacyl-CoA by the D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxy-acyl-CoA dehydrogenase bifunctional protein (d-bifunctional protein), and the oxidation of bile-acid precursors also has been suggested as being catalyzed by the d-bifunctional protein. Because of the important roles of this protein, we reinvestigated two Japanese patients previously diagnosed as having enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase bifunctional protein (L-bifunctional protein) deficiency, in complementation studies. We found that both the protein and the enzyme activity of the d-bifunctional protein were hardly detectable in these patients but that the active L-bifunctional protein was present. The mRNA level in patient 1 was very low, and, for patient 2, mRNA was of a smaller size. Sequencing analysis of the cDNA revealed a 52-bp deletion in patient 1 and a 237-bp deletion in patient 2. This seems to be the first report of D-bifunctional protein deficiency. Patients previously diagnosed as cases of L-bifunctional protein deficiency probably should be reexamined for a possible d-bifunctional protein deficiency.  相似文献   

14.
Epimerase-deficiency galactosemia results from impairment of the human enzyme UDP-galactose-4-epimerase (hGALE). We and others have identified substitution mutations in the hGALE alleles of patients with the clinically mild, peripheral form of epimerase deficiency. We report here the first identification of an hGALE mutation in a patient with the clinically severe, generalized form of epimerase deficiency. The mutation, V94M, was found on both GALE alleles of this patient. This same mutation also was found in the homozygous state in two additional patients with generalized epimerase deficiency. The specific activity of the V94M-hGALE protein expressed in yeast was severely reduced with regard to UDP-galactose and partially reduced with regard to UDP-N-acetylgalactosamine. In contrast, two GALE-variant proteins associated with peripheral epimerase deficiency, L313M-hGALE and D103G-hGALE, demonstrated near-normal levels of activity with regard to both substrates, but a third allele, G90E-hGALE, demonstrated little, if any, detectable activity, despite near-normal abundance. G90E originally was identified in a heterozygous patient whose other allele remains uncharacterized. Thermal lability and protease-sensitivity studies demonstrated compromised stability in all of the partially active mutant enzymes.  相似文献   

15.
Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is a disorder of fatty acid catabolism, with autosomal recessive inheritance. The disease is characterized by episodic illness associated with potentially fatal hypoglycemia and has a relatively high frequency. A rapid and reliable method for the diagnosis of MCAD deficiency is highly desirable. Analysis of specific acylcarnitines was performed by isotope-dilution tandem mass spectrometry on plasma or whole blood samples from 62 patients with MCAD deficiency. Acylcarnitines were also analyzed in 42 unaffected relatives of patients with MCAD deficiency and in other groups of patients having elevated plasma C8 acylcarnitine, consisting of 32 receiving valproic acid, 9 receiving medium-chain triglyceride supplement, 4 having multiple acyl-coenzyme A dehydrogenase deficiency, and 8 others with various etiologies. Criteria for the unequivocal diagnosis of MCAD deficiency by acylcarnitine analysis are an elevated C8-acylcarnitine concentration (> 0.3 microM), a ratio of C8/C10 acylcarnitines of > 5, and lack of elevated species of chain length > C10. These criteria were not influenced by clinical state, carnitine treatment, or underlying genetic mutation, and no false-positive or false-negative results were obtained. The same criteria were also successfully applied to profiles from neonatal blood spots retrieved from the original Guthrie cards of eight patients. Diagnosis of MCAD deficiency can therefore be made reliably through the analysis of acylcarnitines in blood, including presymptomatic neonatal recognition. Tandem mass spectrometry is a convenient method for fast and accurate determination of all relevant acylcarnitine species.  相似文献   

16.
In the past few years, many patients have been described who have a defect of unknown origin in the peroxisomal beta-oxidation pathway. Complementation analysis has been done by various groups to establish the extent of the genetic heterogeneity among the patients. These studies were based on the use of two established cell lines, one with a deficiency of acyl-CoA oxidase and one with a deficiency of l-bifunctional protein (l-BP), and they showed that most patients belong to the l-BP-deficient group. However, molecular analysis of the cDNA encoding l-BP in patients failed to show any mutations. The recent identification of a new d-specific bifunctional protein (d-BP) prompted us to reinvestigate the original patient with presumed l-BP deficiency. In a collaborative effort, we have now found that the true defect in this patient is at the level of the d-BP and not at the level of the l-BP. Our results suggest that most, if not all, patients whose condition has been diagnosed as l-BP are, in fact, d-BP deficient. We tested this hypothesis in nine patients whose condition was diagnosed as l-BP deficiency on the basis of complementation analysis and found clear-cut mutations in the d-BP cDNA from all patients.  相似文献   

17.
A biosynthetic pathway for the production of (S)-3-hydroxybutyric acid (S3HB) from glucose was established in recombinant Escherichia coli by introducing the beta-ketothiolase gene from Ralstonia eutropha H16, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene from R. eutropha H16, or Clostridium acetobutylicum ATCC824, and the 3-hydroxyisobutyryl-CoA hydrolase gene from Bacillus cereus ATCC14579. Artificial operon consisting of these genes was constructed and was expressed in E. coli BL21 (DE3) codon plus under T7 promoter by isopropyl beta-D: -thiogalactoside (IPTG) induction. Recombinant E. coli BL21 (DE3) codon plus expressing the beta-ketothiolase gene, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene, and the 3-hydroxyisobutyryl-CoA hydrolase gene could synthesize enantiomerically pure S3HB to the concentration of 0.61 g l(-1) from 20 g l(-1) of glucose in Luria-Bertani medium. Fed-batch cultures of recombinant E. coli BL21 (DE3) codon plus were carried out to achieve higher titer of S3HB with varying induction time and glucose concentration during fermentation. Protein expression was induced by addition of 1 mM IPTG when cell concentration reached 10 and 20 g l(-1) (OD(600) = 30 and 60), respectively. When protein expression was induced at 60 of OD(600) and glucose was fed to the concentration of 15 g l(-1), 10.3 g l(-1) of S3HB was obtained in 38 h with the S3HB productivity of 0.21 g l(-1)h(-1). Lowering glucose concentration to 5 g l(-1) and induction of protein expression at 30 of OD(600) significantly reduced final S3HB concentration to 3.7 g l(-1), which also resulted in the decrease of the S3HB productivity to 0.05 g l(-1)h(-1).  相似文献   

18.
We report a novel mild variant of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) diagnosed in four infants who, in neonatal screening, showed abnormal acylcarnitine profiles indicative of MCADD. Three patients showed completely normal urinary organic acids and phenylpropionic acid loading tests were normal in all four patients. Enzyme studies showed residual MCAD activities between "classical" MCADD and heterozygotes. ACADM gene analysis revealed compound heterozygosity for the common mutation K329E and a novel mutation, Y67H, in two cases, and homozygosity for mutation G267R and the novel mutation S245L, respectively, in two children of consanguineous parents. As in other metabolic disorders, the distinction between "normal" and "disease" in MCAD deficiency is blurring into a spectrum of enzyme deficiency states caused by different mutations in the ACADM gene potentially influenced by factors affecting intracellular protein processing.  相似文献   

19.
Fructose-1,6-bisphosphatase (FBPase) deficiency is an autosomal recessive inherited disorder and may cause sudden unexpected infant death. We reported the first case of molecular diagnosis of FBPase deficiency, using cultured monocytes as a source for FBPase mRNA. In the present study, we confirmed the presence of the same genetic mutation in this patient by amplifying genomic DNA. Molecular analysis was also performed to diagnose another 12 Japanese patients with FBPase deficiency. Four mutations responsible for FBPase deficiency were identified in 10 patients from 8 unrelated families among a total of 13 patients from 11 unrelated families; no mutation was found in the remaining 3 patients from 3 unrelated families. The identified mutations included the mutation reported earlier, with an insertion of one G residue at base 961 in exon 7 (960/961insG) (10 alleles, including 2 alleles in the Japanese family from our previous report [46% of the 22 mutant alleles]), and three novel mutations--a G-->A transition at base 490 in exon 4 (G164S) (3 alleles [14%]), a C-->A transversion at base 530 in exon 4 (A177D) (1 allele [4%]), and a G-->T transversion at base 88 in exon 1 (E30X) (2 alleles [9%]). FBPase proteins with G164S or A177D mutations were enzymatically inactive when purified from E. coli. Another new mutation, a T-->C transition at base 974 in exon 7 (V325A), was found in the same allele with the G164S mutation in one family (one allele) but was not responsible for FBPase deficiency. Our results indicate that the insertion of one G residue at base 961 was associated with a preferential disease-causing alternation in 13 Japanese patients. Our results also indicate accurate carrier detection in eight families (73%) of 11 Japanese patients with FBPase deficiency, in whom mutations in both alleles were identified.  相似文献   

20.
We have used radio-high pressure liquid chromatography to study the acyl-CoA ester intermediates and the acylcarnitines formed during mitochondrial fatty acid oxidation. During oxidation of [U-14C]hexadecanoate by normal human fibroblast mitochondria, only the saturated acyl-CoA and acylcarnitine esters can be detected, supporting the concept that the acyl-CoA dehydrogenase step is rate-limiting in mitochondrial beta-oxidation. Incubations of fibroblast mitochondria from patients with defects of beta-oxidation show an entirely different profile of intermediates. Mitochondria from patients with defects in electron transfer flavoprotein and electron transfer flavoprotein:ubiquinone oxido-reductase are associated with slow flux through beta-oxidation and accumulation of long chain acyl-CoA and acylcarnitine esters. Increased amounts of saturated medium chain acyl-CoA and acylcarnitine esters are detected in the incubations of mitochondria with medium chain acyl-CoA dehydrogenase deficiency, whereas long chain 3-hydroxyacyl-CoA dehydrogenase deficiency is associated with accumulation of long chain 3-hydroxyacyl- and 2-enoyl-CoA and carnitine esters. These studies show that the control strength at the site of the defective enzyme has increased. Radio-high pressure liquid chromatography analysis of intermediates of mitochondrial fatty acid oxidation is an important new technique to study the control, organization and defects of the enzymes of beta-oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号