首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
mAbs bd 17, bd 24, and bd 28 raised against bovine cerebral gamma-aminobutyric acid (GABAA)/benzodiazepine receptors were analyzed for their ability to detect each of 12 GABAA receptor subunits expressed in cultured mammalian cells. Results showed that mAb bd 17 recognizes epitopes on both beta 2 and beta 3 subunits while mAb bd 24 is selective for the alpha 1 subunit of human and bovine, but not of rat origin. The latter antibody reacts with the rat alpha 1 subunit carrying an engineered Leu at position four, documenting the first epitope mapping of a GABAA receptor subunit-specific mAb. In contrast to mAbs bd 17 and bd 24, mAb bd 28 reacts with all GABAA receptor subunits tested but not with a glycine receptor subunit, suggesting the presence of shared epitopes on subunits of GABA-gated chloride channels.  相似文献   

2.
Murine gamma-aminobutyric acid (GABA) type A homomeric receptors made of beta1 subunits are profoundly different, when expressed in Xenopus oocytes, from beta3 homomeric receptors. Application of the intravenous general anesthetic pentobarbital, etomidate, or propofol to beta3 homomeric receptors allows current flow. In contrast, beta1 homomers do not respond to any of these agents. Through construction of chimeric beta1/beta3 receptors, we identified a single amino acid that determines the pharmacological difference between the two beta subunits. When the serine residue present in the wild-type nonresponsive beta1 subunit is replaced by an asparagine found in the same position in the beta3 subunit, the resulting point-mutated beta1S265N forms receptors responsive to intravenous general anesthetics, like the wild-type beta3 subunits. Conversely, after mutation of the wild-type beta3 to beta3N265S, the homomeric receptor loses its ability to respond to these same general anesthetics. Wild-type-to-mutant titration experiments showed that the nonresponsive phenotype is dominant: A single nonresponsive residue within a pentameric receptor is sufficient to render the receptor nonresponsive. In alpha1betax or alpha1betaxgamma2 heteromeric receptors, the same residue manifests as a partial determinant of the degree of potentiation of the GABA-induced current by some general anesthetics. The location of this amino acid at the extracellular end of the second transmembrane segment, its influence in both homomeric and heteromeric receptor function, and its dominant behavior suggest that this residue of the beta subunit is involved in an allosteric modulation of the receptor.  相似文献   

3.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
The majority of fast inhibitory neurotransmission in the CNS is mediated by the GABA type-A (GABAA) receptor, a ligand-gated chloride channel. Of the approximately 20 different subunits composing the hetero-pentameric GABAA receptor, the gamma2 subunit in particular seems to be important in several aspects of GABAA receptor function, including clustering of the receptor at synapses. In this study, we report that the intracellular loop of the gamma2 subunit interacts with itself as well as with gamma1, gamma3 and beta1-3 subunits, but not with the alpha subunits. We further show that gamma2 subunits interact with photolabeled pentameric GABAA receptors composed of alpha1, beta2/3 and gamma2 subunits, and calculate the dissociation constant to be in the micromolar range. By using deletion constructs of the gamma2 subunit in a yeast two-hybrid assay, we identified a 23-amino acid motif that mediates self-association, residues 389-411. We confirmed this interaction motif by inhibiting the interaction in a glutathione-S-transferase pull-down assay by adding a corresponding gamma2-derived peptide. Using similar approaches, we identified the interaction motif in the gamma2 subunit mediating interaction with the beta2 subunit as a 47-amino acid motif that includes the gamma2 self-interacting motif. The identified gamma2 self-association motif is identical to the interaction motif reported between GABAA receptor and GABAA receptor-associated protein (GABARAP). We propose a model for GABAA receptor clustering based on GABARAP and GABAA receptor subunit-subunit interaction.  相似文献   

6.
Benzodiazepines (BZ) modulate neurotransmitter-evoked chloride currents at the gamma-aminobutyric acid type A (GABAA) receptor, the major inhibitory ion channel in the mammalian brain. This receptor is composed of structurally distinct subunits whose numerous molecular variants underlie the observed diversity in the properties of the BZ site. Pharmacologically distinct BZ sites can be recreated by the recombinant coexpression of any one of six alpha subunits, a beta subunit variant, and the gamma 2 subunit. In these receptors the alpha variant determines the affinity for ligand binding of the BZ site. Notably, the alpha 1 and alpha 6 variants impart on alpha chi beta 2 gamma 2 receptors high and negligible affinity, respectively, to BZ ligands with sedative as well as anxiolytic activities. By exchanging domains between the alpha 1 and alpha 6 variants, we show that a portion of the large extracellular domain determines sensitivity toward these ligands. Furthermore, we identify a single histidine residue in the alpha 1 variant, replaced by an arginine in alpha 6, as a major determinant for high affinity binding of BZ agonists. This residue also plays a role in determining high affinity binding for BZ antagonists. Hence, this histidine present in the alpha 1, alpha 2, alpha 3, and alpha 5 subunits appears to be a key residue for the action of clinically used BZ ligands.  相似文献   

7.
Gamma-aminobutyric acid, type A (GABAA) receptors are pentameric proteins of which the majority is composed of two alpha subunits, two beta subunits and one gamma subunit. It is well documented that two different types of alpha subunits can exist in a singles GABAA receptor complex. However, information on the abundance of such GABAA receptors is rather limited. Here we tested whether mice containing the His to Arg point mutation in the alpha1, alpha2, or alpha3 subunit at positions 101, 101, and 126, respectively, which render the respective subunits insensitive to diazepam, would be suitable to analyze this issue. Immunodepletion studies indicated that the His to Arg point mutation solely rendered those GABAA receptors totally insensitive to diazepam binding that contain two mutated alpha subunits in the receptor complex, whereas receptors containing one mutated and one heterologous alpha subunit not carrying the mutation remained sensitive to diazepam binding. This feature permitted a quantitative analysis of native GABAA receptors containing heterologous alpha subunits by comparing the diazepam-insensitive binding sites in mutant mouse lines containing one mutated alpha subunit with those present in mouse lines containing two different mutated alpha subunits. The data indicate that the alpha1alpha1-containing receptors with 61% is the most abundant receptor subtype in brain, whereas the alpha1alpha2 (13%), alpha1alpha3 (15%), alpha2alpha2 (12%), alpha2alpha3 (2%), and alpha3alpha3 combinations (4%) are considerably less expressed. Only within the alpha1-containing receptor population does the combination of equal alpha subunits (84% alpha1alpha1, 7% alpha1alpha2, and 8% alpha1alpha3) prevail, whereas in the alpha2-containing receptor population (46% alpha2alpha2, 36% alpha2alpha1, and 19% alpha2alpha3) and particularly in the alpha3-containing receptor population (27% alpha3alpha3, 56% alpha3alpha1, and 19% alpha3alpha2), the receptors with two different types of alpha subunits predominate. This experimental approach provides the basis for a detailed analysis of the abundance of GABAA receptors containing heterologous alpha subunits on a brain regional level.  相似文献   

8.
Mutations that impair the expression and/or function of gamma-aminobutyric acid type A (GABAA) receptors can lead to epilepsy. The familial epilepsy gamma2(K289M) mutation affects a basic residue conserved in the TM2-3 linker of most GABAA subunits. We investigated the effect on expression and function of the Lys --> Met mutation in mouse alpha1(K278M), beta2(K274M), and gamma2(K289M) subunits. Compared with cells expressing wild-type and alpha1beta2gamma2(K289M) receptors, cells expressing alpha1(K278M)beta2gamma2 and alpha1beta2(K274M)gamma2 receptors exhibited reduced agonist-evoked current density and reduced GABA potency, with no change in single channel conductance. The low current density of alpha1beta2(K274M)gamma2 receptors coincided with reduced surface expression. By contrast the surface expression of alpha1(K278M)beta2gamma2 receptors was similar to wild-type and alpha1beta2gamma2(K289M) receptors suggesting that the alpha1(K278M) impairs function. In keeping with this interpretation GABA-activated channels mediated by alpha1(K278M)beta2gamma2 receptors had brief open times. To a lesser extent gamma2(K289M) also reduced mean open time, whereas beta2(K274M) had no effect. We used propofol as an alternative GABAA receptor agonist to test whether the functional deficits of mutant subunits were specific to GABA activation. Propofol was less potent as an activator of alpha1(K278M)beta2gamma2 receptors. By contrast, neither beta2(K274M) nor gamma2(K289M) affected the potency of propofol. The beta2(K274M) construct was unique in that it reduced the efficacy of propofol activation relative to GABA. These data suggest that the alpha1 subunit Lys-278 residue plays a pivotal role in channel gating that is not dependent on occupancy of the GABA binding site. Moreover, the conserved TM2-3 loop lysine has an asymmetric function in different GABAA subunits.  相似文献   

9.
Cloned cDNAs encoding two new beta subunits of the rat and bovine GABAA receptor have been isolated using a degenerate oligonucleotide probe based on a highly conserved peptide sequence in the second transmembrane domain of GABAA receptor subunits. The beta 2 and beta 3 subunits share approximately 72% sequence identity with the previously characterized beta 1 polypeptide. Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA. All three beta subunit encoding cDNAs were also identified in a library constructed from adrenal medulla RNA. Each beta subunit, when co-expressed in Xenopus oocytes with an alpha subunit, forms functional GABAA receptors. These results, together with the known alpha subunit heterogeneity, suggest that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations.  相似文献   

10.
Two novel GABAA receptor subunits exist in distinct neuronal subpopulations   总被引:26,自引:0,他引:26  
Two cDNAs encoding novel GABAA receptor subunits were isolated from a rat brain library. These subunits, gamma 2 and delta, share approximately 35% sequence identity with alpha and beta subunits and form functional GABA-gated chloride channels when expressed alone in vitro. The gamma 2 subunit is the rat homolog of the human gamma 2 subunit recently shown to be important for benzodiazepine pharmacology. Cellular localization of the mRNAs encoding the gamma 2 and delta subunits in rat brain revealed that largely distinct neuronal subpopulations express the two subunits. The delta subunit distribution resembles that of the high affinity GABAA receptor labeled with [3H]muscimol; the gamma 2 subunit distribution resembles that of GABAA/benzodiazepine receptors labeled with [3H]flunitrazepam. These findings have implications for the composition of two different GABAA receptor subtypes and for information processing in networks using GABA for signaling.  相似文献   

11.
Incorporation of the epsilon subunit into the GABAA receptor has been suggested to confer unusual, but variable, biophysical and pharmacological characteristics to both recombinant and native receptors. Due to their structural similarity with the gamma subunits, epsilon subunits have been assumed to substitute at the single position of the gamma subunit in assembled receptors. However, prior work suggests that functional variability in epsilon-containing receptors may reflect alternative sites of incorporation and of not just one, but possibly multiple epsilon subunits in the pentameric receptor complex. Here we present data indicating that increased expression of epsilon, in conjunction with alpha2 and beta3 subunits, results in expression of GABAA receptors with correspondingly altered rectification, deactivation and levels of spontaneous openings, but not increased total current density. We also provide data that the epsilon subunit, like the beta3 subunit, can self-export and data from chimeric receptors suggesting that similarities between the assembly domains of the beta3 and the epsilon subunits may allow the epsilon subunit to replace the beta, as well as the gamma, subunit. The substitution of an epsilon for a beta, as well as the gamma subunit and formation of receptors with alternative patterns of assembly with respect to epsilon incorporation may underlie the observed variability in both biophysical and pharmacological properties noted not only in recombinant, but also in native receptors.  相似文献   

12.
Molecular biology of mammalian amino acid receptors   总被引:4,自引:0,他引:4  
The amino acid receptor proteins are ubiquitous transducers of most excitatory and inhibitory synaptic transmission in the brain. In July 1987 two reports appeared describing the molecular cloning of a pair of subunits of the GABAA receptor (7) and one subunit of the glycine receptor (13). These papers sparked wide interest and led quickly to the concept of a ligand-gated receptor-ion channel superfamily that includes nicotinic acetylcholine receptors as well as certain amino acid receptors. The identification of additional subunits of each receptor followed; with the recent cloning of a kainate receptor subunit (14), only the NMDA receptor remains elusive. Several disciplines have been brought to bear on these receptor clones, including in situ hybridization and functional expression in Xenopus laevis oocytes and mammalian cell lines. In this review we compare cloning strategies that have been used for amino acid receptors and discuss structural similarities among the receptor subunits. Two findings that have arisen from molecular cloning and expression of these receptors receive special attention. First, the molecular heterogeneity of GABAA receptors is larger than expected from pharmacological studies of native receptors. Second, although the native receptors are thought to be heterooligomers, much like the model proposed for the nicotinic receptors, some individual amino acid receptor subunits can form functional receptor channels, presumably in a homomeric configuration. This review focuses, therefore, on what we have learned from cloning efforts about amino acid receptors and what might lie ahead in this field.  相似文献   

13.
Antisera were produced in rabbits against synthetic peptides based on two regions of the cDNA sequence of the beta 1 subunit of bovine gamma-aminobutyric acidA (GABAA) receptors. The deduced amino acid sequences were similar in other beta subunits of bovine, rat, and chick receptors, predicting cross-reactability with all beta subunits. One antiserum (anti-beta e) was raised against an extracellular moiety near the invariant disulfide loop thought to be located near the neurotransmitter binding domain; the other (anti-beta c) was raised against an intracellular moiety containing a consensus sequence for cyclic AMP-dependent protein kinase phosphorylation of a serine residue. Predicted secondary structures suggested high potential immunogenicity for the chosen antigen peptides. Both antisera at high dilutions recognized the same polypeptide bands on western blots of GABAA receptors purified from three regions of bovine brain (four bands at 57, 54, 53, and 52 kDa in cerebral cortex) but fewer bands (57, 54, and 52 kDa) in hippocampus and cerebellum (one major band at 54 kDa, traces at 57 and 53 kDa). This is consistent with the presence of multiple beta subunits whose expression varies with brain region, as shown by molecular cloning. The anti-beta c antibody was able to immunoprecipitate purified GABAA receptor [3H]-muscimol binding, 87% in bovine cortex and 75% in total rat brain; the anti-beta e was unable to immunoprecipitate any antigen. These antibodies indicate a region-dependent heterogeneity of beta subunits and should be useful for analyzing structure, function, and localization of GABAA receptor subtypes in brain.  相似文献   

14.
Tritiated meta-sulfonate benzene diazonium ([3H]MSBD), a molecule structurally related to 4-aminobutyrate (GABA), which presents a reactivity toward nucleophilic amino acid residues, was synthesized to investigate the GABA binding site on the GABAA receptor. Irreversible labeling reactions using [3H]MSBD were performed on purified GABAA receptors isolated from cow brain membranes and labeled receptors were analyzed by SDS/PAGE. [3H]MSBD was found to be specifically incorporated into proteins in the 45-60 kDa molecular mass range which were identified as alpha1 subunits and beta2/beta3 subunits by immunoprecipitation with subunit-specific antibodies. The specific immunoprecipitation of alpha and beta subunits confirms that binding of [3H]MSBD occurs at the boundary of these subunits. These labeling results confirm the involvement of nucleophilic residues from the beta subunit but reveal also the contribution of yet unidentified nucleophilic residues on the alpha subunit for the GABA binding site.  相似文献   

15.
ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.  相似文献   

16.
The molecular mechanisms that underlie ethanol dependence involve alterations in the functional properties and subunit expression of GABAA receptors. Chronic ethanol exposure decreases GABAA receptor alpha1 subunits and increases alpha4 subunit levels in cerebral cortical membranes. This study explored the effect of chronic ethanol exposure on internalization of GABAA/benzodiazepine receptors. Chronic ethanol exposure increased alpha1 subunit levels by 46 +/- 12% and [3H]flunitrazepam binding by 35 +/- 9% in the clathrin-coated vesicle (CCV) fraction. There was a corresponding 34 +/- 8% decrease in alpha1 peptide expression and 37 +/- 6% decrease in [3H]flunitrazepam binding in the synaptic fraction. Chronic ethanol consumption also increased the alpha1 subunit immunoprecipitate in the cytosolic fraction (77 +/- 22%), measured by western blot analysis. Moreover, co-immunoprecipitation of both clathrin and adaptin-alpha with alpha1 subunits was increased in the cytosolic fraction, suggesting that alpha1 subunit endocytosis is enhanced by chronic ethanol consumption. In contrast, alpha4 subunit peptide levels were not altered in the CCV fraction despite a 39 +/- 13% increase in peptide levels in the synaptic fraction of cortex. Moreover, acute ethanol exposure did not alter alpha1 subunit peptide expression or [3H]flunitrazepam binding in the synaptic or CCV fractions. These results suggest that chronic ethanol consumption selectively increases internalization of alpha1 subunit-containing GABAA receptors in cerebral cortex.  相似文献   

17.
In vertebrate olfactory receptors, cAMP produced by odorants opens cyclic nucleotide-gated (CNG) channels, which allow Ca(2+) entry and depolarization of the cell. These CNG channels are composed of alpha subunits and at least two types of beta subunits that are required for increased cAMP selectivity. We studied the molecular basis for the altered cAMP selectivity produced by one of the beta subunits (CNG5, CNCalpha4, OCNC2) using cloned rat olfactory CNG channels expressed in Xenopus oocytes. Compared with alpha subunit homomultimers (alpha channels), channels composed of alpha and beta subunits (alpha+beta channels) were half-activated (K(1/2)) by eightfold less cAMP and fivefold less cIMP, but similar concentrations of cGMP. The K(1/2) values for heteromultimers of the alpha subunit and a chimeric beta subunit with the alpha subunit cyclic nucleotide-binding region (CNBR) (alpha+beta-CNBRalpha channels) were restored to near the values for alpha channels. Furthermore, a single residue in the CNBR could account for the altered ligand selectivity. Mutation of the methionine residue at position 475 in the beta subunit to a glutamic acid as in the alpha subunit (beta-M475E) reverted the K(1/2,cAMP)/K(1/2,cGMP) and K(1/2, cIMP)/K(1/2,cGMP) ratios of alpha+beta-M475E channels to be very similar to those of alpha channels. In addition, comparison of alpha+beta-CNBRalpha channels with alpha+beta-M475E channels suggests that the CNBR of the beta subunit contains amino acid differences at positions other than 475 that produce an increase in the apparent affinity for each ligand. Like the wild-type beta subunit, the chimeric beta/alpha subunits conferred a shallow slope to the dose-response curves, increased voltage dependence, and caused desensitization. In addition, as for alpha+beta channels, block of alpha+betaCNBRalpha channels by internal Mg(2+) was not steeply voltage-dependent (zdelta approximately 1e(-)) as compared to block of alpha channels (zdelta 2.7e(-)). Thus, the ligand-independent effects localize outside of the CNBR. We propose a molecular model to explain how the beta subunit alters ligand selectivity of the heteromeric channels.  相似文献   

18.
Two of the gamma-aminobutyric acid (GABA) receptors, GABAA and GABAC, are ligand-gated chloride channels expressed by neurons in the retina and throughout the central nervous system. The different subunit composition of these two classes of GABA receptor result in very different physiological and pharmacological properties. Although little is known at the molecular level as to the subunit composition of any native GABA receptor, it is thought that GABAC receptors are homomeric assemblies of rho-subunits. However, we found that the kinetic and pharmacological properties of homomeric receptors formed by each of the rho-subunits cloned from perch retina did not resemble those of the GABAC receptors on perch bipolar cells. Because both GABAA and GABAC receptors are present on retinal bipolar cells, we attempted to determine whether subunits of these two receptor classes are capable of interacting with each other. We report here that, when coexpressed in Xenopus oocytes, heteromeric (rho 1B gamma 2) receptors formed by coassembly of the rho 1B-subunit with the gamma 2-subunit of the GABAA receptor displayed response properties very similar to those obtained with current recordings from bipolar cells. In addition to being unresponsive to bicuculline and diazepam, the time-constant of deactivation, and the sensitivities to GABA, picrotoxin and zinc closely approximated the values obtained from the native GABAC receptors on bipolar cells. These results provide the first direct evidence of interaction between GABA rho and GABAA receptor subunits. It seems highly likely that coassembly of GABAA and rho-subunits contributes to the molecular organization of GABAC receptors in the retina and perhaps throughout the nervous system.  相似文献   

19.
To image the possible alterations in brain regional GABAA receptor subtype properties in a genetic animal model of human anxiety, mice heterozygous for the deletion of GABAA receptor gamma2 subunit (gamma2+/-) were studied using ligand autoradiographic assays on brain cryostat sections. The [35S]TBPS binding assay was designed to reveal impaired GABA and channel site coupling shown to be more prominent in recombinant alpha1/6beta3 than in alpha1/2beta3gamma2 or beta2 subunit-containing GABAA receptors expressed in HEK 293 cells. Increased GABA-insensitive [35 S]TBPS binding in the gamma2+/- mouse brains was evident in the cerebral cortex and in subcortical regions, the alterations being regionally similar to the loss of gamma2 subnunit-dependent benzodiazepine (BZ) sites as revealed by [3H]Ro 15-4513 autoradiography. As the gamma2 subunit protein is needed for synaptic clustering of GABAA receptors, these results indicate that the extrasynaptic alphabeta3 receptors can be visualized in vitro as atypical GABA-insensitive [35S]TBPS binding sites. The results suggest that GABAAergic synaptic inhibition is widely decreased in the brains of anxiety-prone gamma2+/- mice, while extrasynaptic GABAA receptors are increased. These autoradiographic imaging findings further demonstrate the need to develop GABAA receptor subtype-selective in vivo ligands to aid in assessing the contributions of various subcellular receptor populations in anxious and other patient groups.  相似文献   

20.
GABAA receptor channels mediate postsynaptic inhibition. The functional diversity of these receptors rests on differences in subunit composition and on a large repertoire of subunits. Subunit expression patterns in the brain have been found to predict in vivo compositions of GABAA receptors. In addition, molecular determinants underlying the differential binding properties of allosteric ligands to receptor subtypes have been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号