首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Some kinetic parameters of the β- -glucosidase (cellobiase, β- -glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β- -glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. -Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. -Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while -fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β- -glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

2.
The effect of the growth of temperature, pH, carbon source, nitrogen supplementation and inoculum size were examined in shake-flask-scale studies to determine the optimum conditions for β-glucosidases production by Sporotrichum (Chrysosporium) thermophile. Wheat bran and sugar-beet pulp were selected as the best carbon sources and (NH4)2SO4, NH4Cl and KNO3 as the best nitrogen supplementation. Ten liter fermentations were carried out to study the kinetics of product formation. It was found that S. thermophile is able to produce high thermostable extracellular cellobiase and aryl-β-glucosidase. Very high aryl-β-glucosidase (PNPG) activities in the range from 30 to 40 U ml−1 and cellobiase activities of 2,45 U ml−1 in the 3-day batch fermentations were obtained. The Km for aryl-β-glucosidase and its thermal properties were also estimated.  相似文献   

3.
An intracellular β-xylosidase from the thermophilic fungus Sporotricum thermophile strain ATCC 34628 was purified to homogeneity by Q-Sepharose and Mono-Q column chromatographies. The protein properties correspond to molecular mass and pI values of 45 kDa and 4.2, respectively. The enzyme is optimally active at pH 7.0 and 50 °C. The purified β-xylosidase is fully stable at pH 6.0–8.0 and temperatures up to 50 °C and retained over 58% of its activity after 1 h at 60 °C. The enzyme hydrolyzes β-1,4-linked xylo-oligosaccharides with chain lengths from 2 to 6, releasing xylose from the non-reducing end, but is inactive against xylan substrates. The apparent Km and Vmax values from p-nitrophenyl β-d-xylopyranoside are 1.1 mM and 114 μmol p-nitrophenol min−1 mg−1, respectively. Alcohols inactivate the enzyme, ethanol at 10% (v/v) yields a 30% decrease of its activity. The enzyme is irreversibly inhibited by 2,3-epoxypropyl β-d-xylobioside while alkyl epoxides derived from d-xylose were not inhibitors of the enzyme. The enzyme catalyses the condensation reaction using high donor concentration, up to 60% (w/v) xylose.  相似文献   

4.
Purified β-glucosidase from Fusarium oxysporum catalyses hydrolysis and transglycosylation reactions. By utilizing the transglycosylation reaction, trisaccharides and alkyl β-d-glucosides were synthesized under optimal conditions in the presence of various disaccharides and alcohols. The yields of trisaccharides and alkyl β-d-glucosides were 22–37% and 10–33% of the total sugar, respectively. The enzyme retained 70–80% of its original activity in the presence of 25% (w/v) methanol, ethanol and propanol. Thus, β-glucosidase from F. oxysporum appears to be an ideal enzyme for the synthesis of useful trisaccharides and alkyl β-d-glucosides.  相似文献   

5.
Seven mutations affecting β-glucosidase activity in Dictyostelium discoideum were found to be non-complementing, recessive to the wild-type allele, and to occur in the gene locus, gluA. This gene, which is likely to be the structural gene for β-glucosidase, since a mutation in it gives rise to thermolabile activity and other mutations in it result in no measurable activity, was mapped to linkage group VI. The expression of the β-glucosidase gene is regulated such that the enzyme is synthesized during the growth phase and during culmination, but not during the first 18 hours following the initiation of development. If expression of the structural gene required the function of a positive regulatory protein coded for by a gene as mutable as the gluA gene, there was greater than 99% chance one of the mutations of this series would have affected the regulatory locus. The absence of a second complementing locus for β-glucosidase suggests that this enzyme is regulated by other means.  相似文献   

6.
β-Glucosidase (BGL1) from Aspergillus oryzae was efficiently produced in recombinant A. oryzae using sodM promoter-mediated expression system. The yield of BGL1 was 960 mg/l in liquid culture, which is 20-fold higher than the yield of BGL1 produced using the yeast Saccharomyces cerevisiae. Recombinant BGL1 converted isoflavone glycosides into isoflavone aglycones more efficiently than β-glucosidase from almond. In addition, BGL1 produced isoflavone aglycones even in the presence of the insoluble form of isoflavone glycosides.  相似文献   

7.
8.
Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the β- -glucosidase [β- -glucoside glucohydrolase, EC 3.2.1.21] activity was approximately six to nine times greater.  相似文献   

9.
The influence of several parameters, such as temperature, pH, and concentration of buffer and solvent, on the release of β-galactosidase from Kluyveromyces marxianus cells was studied. In optimal conditions (37°C, pH 9.5–10.5) greater than 90% of the intracellular β-galactosidase activity was released into 0.1-0.5 phosphate buffer after 1.5-2.0 h treatment with 1% chloroform. The described method is simple, effective, relatively fast, and selective.  相似文献   

10.
Dunaliella accumulates massive amounts of β-carotene when cultivated under high light intensity and growth-limiting conditions. The pathway for biosynthesis of β-carotene was elucidated by analysis of the effect of selected inhibitors. The presence of the inhibitors elicited the accumulation of the following intermediates: β-zeacarotene, lycopene, ζ-carotene, phytofluene, phytoene and a few unidentified long-chain isoprenoids. Each of the accumulated intermediates was composed of about equal amounts of two stereisomers, as is the case for β-carotene in the untreated algae. It is deduced, therefore, that the isomerization reaction occurs early in the pathway of β-carotene biosynthesis, at or before phytoene.The unique caratenogenesis properties of Dunaliella led to the development of a new biotechnological process for mass-cultivation of the alga. Commercial production facilities for β-carotene rich Dunaliella exist today in Israel, USA, Australia, Spain and China. Recent developments, which indicate that the stereoisometric mixture of β-carotene present in Dunaliella is preferentially absorbed in animal tissues, coupled with new evidence for the efficacy of β-carotene in reducing the incidence of cancer, have opened new vistas of potential markets for the high β-carotene algae.  相似文献   

11.
12.
13.
14.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   

15.
A novel β-glucosidase from Fusarium proliferatum ECU2042 (FPG) was successfully purified to homogeneity with a 506-fold increase in specific activity. The molecular mass of the native purified enzyme (FPG) was estimated to be approximately 78.7 kDa, with two homogeneous subunits of 39.1 kDa, and the pI of this enzyme was 4.4, as measured by two-dimensional electrophoresis. The optimal activities of FPG occurred at pH 5.0 and 50 °C, respectively. The enzyme was stable at pH 4.0–6.5 and temperatures below 60 °C, and the deactivation energy (Ed) for FPG was 88.6 kJ mo1−1. Moreover, it was interesting to find that although the purified enzyme exhibited a very low activity towards p-nitrophenyl β-d-glucoside (pNPG), and almost no activity towards cellobiose, a relatively high activity was observed on ginsenoside Rg3. The enzyme hydrolyzed the 3-C, β-(1 → 2)-glucoside of ginsenoside Rg3 to produce ginsenoside Rh2, but did not sequentially hydrolyze the β-d-glucosidic bond of Rh2. The Km and Vmax values of FPG for ginsenoside Rg3 were 2.37 mM and 0.568 μmol (h mg protein)−1, respectively. In addition, this enzyme also exhibited significant activities towards various alkyl glucosides, aryl glucosides and several natural glycosides.  相似文献   

16.
An alternative and fast method for the purification of an exo-β- -galactofuranosidase has been developed using a 4-aminophenyl 1-thio-β- -galactofuranoside affinity chromatography system and specific elution with 10 mM -galactono-1,4-lactone in a salt gradient. A concentrated culture medium from Penicillium fellutanum was chromatographed on DEAE–Sepharose CL 6B followed by chromatography on the affinity column, yielding two separate peaks of enzyme activity when elution was performed with 10 mM -galactono-1,4-lactone in a 100–500 mM NaCl salt gradient. Both peaks behaved as a single 70 kDa protein, as detected by SDS-PAGE. Antibodies elicited against a mixture of the single bands excised from the gel were capable of immunoprecipitating 0.2 units out of 0.26 total units of the enzyme from a crude extract. The glycoprotein nature of the exo-β- -galactofuranosidase was ascertained through binding to Concanavalin A–Sepharose as well as by specific reaction with Schiff reagent in Western blots. The purified enzyme has an optimum acidic pH (between 3 and 6), and Km and Vmax values of 0.311 mM and 17 μmol h−1 μg−1 respectively, when 4-nitrophenyl β- -galactofuranoside was employed as the substrate.  相似文献   

17.
The aguA gene encoding α-glucuronidase was isolated from the thermophilic fungus Talaromyces emersonii by degenerate PCR. AguA has no introns and consists of an open reading frame of 2511 bp, encoding a putative protein of 837 amino acids. The N-terminus of the protein contains a putative signal peptide of 17 amino acids yielding a mature protein of 820 amino acids with a predicted molecular mass of 91.6 kDa. Twenty putative N-glycosylation sites and four O-glycosylation were identified. The T. emersonii α-glucuronidase falls into glycosyl hydrolase family 67, showing approximately 63% identity to similar enzymes from other fungi. Analysis of the aguA promoter revealed several possible regulatory motifs including two XlnR and a CreA binding site. Enzyme activity was optimal at 50 °C and pH 5. Enzyme production was investigated on a range of carbon sources and showed induction on beechwood, oat spelt and birchwood xylan, and repression by glucose or glucuronic acid.  相似文献   

18.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Compared with saccharification in the absence of yeast, simultaneous saccharification and fermentation (SSF) using Trichoderma cellulases and Saccharomyces cerevisiae enhanced cellulose hydrolysis rates by 13–30%. The optimum temperature for SSF was 35°C. The requirement for β- -glucosidase (β- -glucoside glucohydrolase, EC 3.2.1.21) in SSF was lower than for saccharification: maximal ethanol production was attained when the ratio of the activity of β- -glucosidase to filter paper activity was 1.0. Ethanol inhibited cellulases uncompetitively, with an inhibition constant of 30.5 gl −1, but its effect was less severe than that of an equivalent concentration of cellobiose or glucose. No irreversible denaturation of cellulases [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] by ethanol was observed.  相似文献   

20.
A novel enzyme, β-phenylalanine ester hydrolase, useful for chiral resolution of β-phenylalanine and for its β-peptide synthesis was characterized. The enzyme purified from the cell free-extract of Sphingobacterium sp. 238C5 well hydrolyzed β-phenylalanine esters (S)-stereospecifically. Besides β-phenylalanine esters, the enzyme catalyzed the hydrolysis of several α-amino acid esters with l-stereospecificity, while the deduced 369 amino acid sequence of the enzyme exhibited homology to alkaline d-stereospecific peptide hydrolases from Bacillus strains. Escherichia coli transformant expressing the β-phenylalanine ester hydrolase gene exhibited an about 8-fold increase in specific (S)-β-phenylalanine ethyl ester hydrolysis as compared with that of Sphingobacterium sp. 238C5. The E. coli transformant showed (S)-enantiomer specific esterase activity in the reaction with a low concentration (30 mM) of β-phenylalanine ethyl ester, while it showed both esterase and transpeptidase activity in the reaction with a high concentration (170 mM) of β-phenylalanine ethyl ester and produced β-phenylalanyl-β-phenylalanine ethyl ester. This transpeptidase activity was useful for β-phenylalanine β-peptide synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号