首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important “monomers” for lignification, in which they are incorporated into the growing lignin polymer chain. p-Coumaroyl-CoA monolignol transferases (PMTs) increase the production of monolignol p-coumarates, and feruloyl-CoA monolignol transferases (FMTs) catalyze the production of monolignol ferulate conjugates. We identified putative FMT and PMT enzymes in sorghum (Sorghum bicolor) and switchgrass (Panicum virgatum) and have compared their activities to those of known monolignol transferases. The putative FMT enzymes produced both monolignol ferulate and monolignol p-coumarate conjugates, whereas the putative PMT enzymes produced monolignol p-coumarate conjugates. Enzyme activity measurements revealed that the putative FMT enzymes are not as efficient as the rice (Oryza sativa) control OsFMT enzyme under the conditions tested, but the SbPMT enzyme is as active as the control OsPMT enzyme. These putative FMTs and PMTs were transformed into Arabidopsis (Arabidopsis thaliana) to test their activities and abilities to biosynthesize monolignol conjugates for lignification in planta. The presence of ferulates and p-coumarates on the lignin of these transformants indicated that the putative FMTs and PMTs act as functional feruloyl-CoA and p-coumaroyl-CoA monolignol transferases within plants.

A group of identified BAHD acyltransferases function as feruloyl-CoA monolignol transferases and/or p-coumaroyl-CoA monolignol transferases in vitro and in planta.  相似文献   

2.
3.
Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.

Expressing exogenous, apple-derived chalcone synthase in actively lignifying poplar xylem tissue results in less total lignin, improved saccharification rates, and incorporation of naringenin into lignins.  相似文献   

4.
Grass lignins contain substantial amounts of p‐coumarate (pCA) that acylate the side‐chains of the phenylpropanoid polymer backbone. An acyltransferase, named p‐coumaroyl‐CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol‐pCA conjugates become incorporated into lignin via oxidative radical coupling, thereby generating the observed pCA appendages; however p‐coumarates also acylate arabinoxylans in grasses. To test the authenticity of PMT as a lignin biosynthetic pathway enzyme, we examined Brachypodium distachyon plants with altered BdPMT gene function. Using newly developed cell wall analytical methods, we determined that the transferase was involved specifically in monolignol acylation. A sodium azide‐generated Bdpmt‐1 missense mutant had no (<0.5%) residual pCA on lignin, and BdPMT RNAi plants had levels as low as 10% of wild‐type, whereas the amounts of pCA acylating arabinosyl units on arabinoxylans in these PMT mutant plants remained unchanged. pCA acylation of lignin from BdPMT‐overexpressing plants was found to be more than three‐fold higher than that of wild‐type, but again the level on arabinosyl units remained unchanged. Taken together, these data are consistent with a defined role for grass PMT genes in encoding BAHD (BEAT, AHCT, HCBT, and DAT) acyltransferases that specifically acylate monolignols with pCA and produce monolignol p‐coumarate conjugates that are used for lignification in planta.  相似文献   

5.
Grass cell walls have hydroxycinnamic acids attached to arabinosyl residues of arabinoxylan (AX), and certain BAHD acyltransferases are involved in their addition. In this study, we characterized one of these BAHD genes in the cell wall of the model grass Setaria viridis. RNAi silenced lines of S. viridis (SvBAHD05) presented a decrease of up to 42% of ester-linked p-coumarate (pCA) and 50% of pCA-arabinofuranosyl, across three generations. Biomass from SvBAHD05 silenced plants exhibited up to 32% increase in biomass saccharification after acid pre-treatment, with no change in total lignin. Molecular dynamics simulations suggested that SvBAHD05 is a p-coumaroyl coenzyme A transferase (PAT) mainly involved in the addition of pCA to the arabinofuranosyl residues of AX in Setaria. Thus, our results provide evidence of p-coumaroylation of AX promoted by SvBAHD05 acyltransferase in the cell wall of the model grass S. viridis. Furthermore, SvBAHD05 is a promising biotechnological target to engineer crops for improved biomass digestibility for biofuels, biorefineries and animal feeding.  相似文献   

6.
Hydroxycinnamates incorporate into lignins by various mechanisms. The polysaccharide esters of ferulate, in particular, and the range of dehydrodiferulates and higher oligomers in grasses, participate in free-radical (cross-)coupling reactions during lignification to become integrally bound into the lignin polymer, resulting in extensive cross-linking between lignins and polysaccharides. Monolignol-hydroxycinnamate (primarily monolignol-p-coumarate) conjugates are primary building blocks for lignins, again in grasses (but analogously with monolignol acetates and p-hydroxybenzoates in other plants); radical coupling reactions of the monolignol moiety of the conjugate result in lignins with pendant p-coumarate units acylating a variety of lignin structures. Recent evidence suggests that even the hydroxycinnamic acids themselves can be monomers in lignification in wild-type and transgenic plants, undergoing radical cross-coupling reactions to incorporate into the polymer with interesting consequences. The compatibility of ferulate, in particular, with lignification suggests that plants able to utilize monolignol-ferulate conjugates in their primary monomer supply will be particularly well suited for subsequent chemical delignification, potentially improving processes for biomass conversion to biofuels, and for chemical pulping.  相似文献   

7.
Brachypodium distachyon (Brachypodium) has been proposed as a model for grasses, but there is limited knowledge regarding its lignins and no data on lignin‐related mutants. The cinnamyl alcohol dehydrogenase (CAD) genes involved in lignification are promising targets to improve the cellulose‐to‐ethanol conversion process. Down‐regulation of CAD often induces a reddish coloration of lignified tissues. Based on this observation, we screened a chemically induced population of Brachypodium mutants (Bd21–3 background) for red culm coloration. We identified two mutants (Bd4179 and Bd7591), with mutations in the BdCAD1 gene. The mature stems of these mutants displayed reduced CAD activity and lower lignin content. Their lignins were enriched in 8–O–4‐ and 4–O–5‐coupled sinapaldehyde units, as well as resistant inter‐unit bonds and free phenolic groups. By contrast, there was no increase in coniferaldehyde end groups. Moreover, the amount of sinapic acid ester‐linked to cell walls was measured for the first time in a lignin‐related CAD grass mutant. Functional complementation of the Bd4179 mutant with the wild‐type BdCAD1 allele restored the wild‐type phenotype and lignification. Saccharification assays revealed that Bd4179 and Bd7591 lines were more susceptible to enzymatic hydrolysis than wild‐type plants. Here, we have demonstrated that BdCAD1 is involved in lignification of Brachypodium. We have shown that a single nucleotide change in BdCAD1 reduces the lignin level and increases the degree of branching of lignins through incorporation of sinapaldehyde. These changes make saccharification of cells walls pre‐treated with alkaline easier without compromising plant growth.  相似文献   

8.
9.
Red clover (Trifolium pratense) leaves accumulate several μmol g−1 fresh weight of phaselic acid [2-O-(caffeoyl)-l-malate]. Postharvest oxidation of such o-diphenols to o-quinones by endogenous polyphenol oxidases prevents breakdown of forage protein during storage. Forage crops like alfalfa (Medicago sativa) lack both polyphenol oxidase and o-diphenols, and breakdown of their protein upon harvest and storage results in economic losses and release of excess nitrogen into the environment. Understanding how red clover synthesizes o-diphenols such as phaselic acid will help in the development of forage crops utilizing this natural system of protein protection. A possible pathway for phaselic acid biosynthesis predicts a hydroxycinnamoyl transferase (HCT) capable of forming caffeoyl and/or p-coumaroyl esters with malate. Genes encoding two distinct HCTs were identified in red clover. HCT1 shares more than 75% amino acid identity with a number of well-characterized shikimate O-HCTs implicated in monolignol biosynthesis. HCT2 shares only 34% amino acid sequence identity with HCT1 and has limited sequence identity to any previously identified HCT. Expression analyses indicate that HCT1 mRNA accumulates to 4-fold higher levels in stems than in leaves, whereas HCT2 mRNA accumulates to 10-fold higher levels in leaves than in stems. Activity assays of HCT1 and HCT2 proteins expressed in Escherichia coli indicate that HCT1 transfers caffeoyl or p-coumaroyl moieties from a coenzyme A-thiolester to shikimate but not malate, whereas HCT2 transfers caffeoyl or p-coumaroyl moieties from a coenzyme A-thiolester to malate but not shikimate. Together, these results indicate that HCT1 is involved in monolignol biosynthesis and HCT2 is a novel transferase likely involved in phaselic acid biosynthesis.In contrast to many other forage legumes (e.g. alfalfa [Medicago sativa]; Jones et al., 1995), red clover (Trifolium pratense) accumulates relatively high levels of the phenylpropanoid o-diphenol phaselic acid [2-O-(caffeoyl)-l-malic acid; hereafter referred to as caffeoyl-malate or phaselic acid] in its leaves (Hatfield and Muck, 1999; Winters et al., 2008). In red clover, upon cellular disruption, phaselic acid and other o-diphenols are readily oxidized by a soluble polyphenol oxidase (PPO) to produce their corresponding o-quinones (Hatfield and Muck, 1999; Sullivan et al., 2004). The formation of such o-quinones by PPO, and the subsequent secondary reactions of these quinones, are most often associated with browning of fresh fruits and vegetables (Steffens et al., 1994), which has a negative impact on perceived quality. When preserved by ensiling, however, oxidation of o-diphenols by PPO in red clover prevents degradation of protein during storage (Sullivan et al., 2004; Sullivan and Hatfield, 2006). Although alfalfa lacks significant levels of both PPO activity and o-diphenol compounds in its leaves, red clover''s natural system of protein protection has been transferred to this forage legume by expressing a red clover PPO transgene in alfalfa and exogenously adding o-diphenol PPO substrates to the resulting tissues or tissue extracts (Sullivan et al., 2004; Sullivan and Hatfield, 2006). Because ruminant animals poorly utilize degraded protein, adaptation of the PPO system to alfalfa and other forage crops would have substantial positive economic and environmental impacts (Sullivan and Hatfield, 2006). Unfortunately, lack of system components in these forage crops, especially the o-diphenol PPO substrates, presents a challenge to practical adaptation of this natural system of protein preservation. Consequently, understanding how red clover is able to accumulate o-diphenols such as phaselic acid will be a key step to adapt the PPO/o-diphenol system to a wide range of economically important forage crops.The biosynthetic pathways whereby red clover synthesizes and accumulates phaselic acid and other o-diphenols have not been defined. However, in the Brassicaceae, hydroxycinnamoyl esters with malic acid can be made via the action of sinapoyl-Glc:malate sinapoyltransferase (SMT; EC 2.3.1), which is capable of transferring a hydroxycinnamoyl moiety from a hydroxycinnamoyl-Glc ester to a malic acid acceptor. In Arabidopsis (Arabidopsis thaliana), SNG1 (for sinapoylglucose accumulator 1), which encodes the enzyme, has been shown to be responsible for the accumulation of sinapoylmalate in seeds and leaves (Lehfeldt et al., 2000). An SMT from radish (Raphanus sativus), presumably the homolog of the Arabidopsis SNG1 gene product, has been purified to apparent homogeneity and characterized (Grawe et al., 1992). The purified enzyme is capable of utilizing sinapoyl-, feruloyl-, caffeoyl-, and to a lesser extent p-coumaroyl-Glc esters to form the corresponding malic acid esters, suggesting that it is responsible for the accumulation of these esters in vivo. In contrast, in many plants, formation of certain hydroxycinnamoyl esters is often mediated by a member of the BAHD transferase family (D''Auria, 2006) that utilize a CoA thiolester hydroxycinnamoyl donor. Some of the best characterized of these hydroxycinnamoyl transferases (HCTs) are those associated with the biosynthesis of monolignols (Hoffmann et al., 2003, 2004; Shadle et al., 2007). These are capable of transferring p-coumaroyl or caffeoyl moieties from the respective CoA thiolesters to form 5-O-esters with shikimic acid or, to a lesser extent, 3-O-esters with quinic acid. Separable enzymatic activities capable of transferring a p-coumaroyl moiety to either shikimate/quinate or to 4′-hydroxyphenyllactate in basil (Ocimum basilicum) peltate gland extracts have been identified, although genes encoding these activities have not been cloned (Gang et al., 2002). Niggeweg et al. (2004) used gene-silencing experiments to definitively demonstrate that a hydroxycinnamoyl-CoA:quinate hydroxycinnamoyl transferase (HQT) is responsible for chlorogenic acid accumulation in the Solanaceae. Although phaselic acid biosynthesis in red clover could be via a pathway utilizing SMT, lack of an apparent SNG1 homolog in a collection of red clover EST sequences derived from leaves and young plants suggests otherwise (see “Discussion”). Therefore, pathways in red clover for the biosynthesis of phaselic acid utilizing one or more BAHD family transferase (Fig. 1) should be considered. In these proposed pathways, Phe would be converted to p-coumaroyl-CoA by the sequential action of Phe ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), and 4-coumarate:CoA ligase (4CL). The action of one or more specific HCTs and one or more p-coumarate 3′-hydroxylases (C3Hs) would then result in the formation of phaselic acid.Open in a separate windowFigure 1.Possible pathways for phaselic acid biosynthesis in red clover. Proposed pathway enzymes for the production of phaselic acid include PAL, 4CL, hydroxycinnamoyl:shikimate transferase (HCT-S), hydroxycinnamoyl:malate transferase (HCT-M), and C3H. The branch point at p-coumaroyl-CoA represents two alternative pathways. For simplicity, not all reactants and products are shown.Existing literature suggests that C3H enzymes, which are cytochrome P450 enzymes (CYP98A subfamily), do not directly hydroxylate p-coumaric acid to caffeic acid but rather act on p-coumaroyl ester derivatives. For example, the enzyme from Arabidopsis hydroxylates shikimic and quinic acid esters of p-coumaric acid but only poorly or not at all p-coumaric acid or its Glc or CoA esters (Schoch et al., 2001; Franke et al., 2002). Thus, one model of phaselic acid biosynthesis is the formation of 2-O-(p-coumaroyl)-l-malic acid (hereafter referred to as p-coumaroyl-malate) by a HCT and its subsequent hydroxylation by a C3H enzyme capable of utilizing the malic acid ester as a substrate (Fig. 1, bottom, red pathway). An alternative model would require at least two HCT activities for phaselic acid biosynthesis (Fig. 1, top, blue pathway). The first activity would form a substrate suitable for hydroxylation (e.g. p-coumaroyl-shikimate, since several characterized C3H enzymes appear to favor this substrate [Schoch et al., 2001; Franke et al., 2002; Gang et al., 2002; Morant et al., 2007]). Following hydroxylation to the caffeoyl derivative by a C3H, the first HCT activity could synthesize caffeoyl-CoA via its reverse reaction (Hoffmann et al., 2003; Niggeweg et al., 2004). A second HCT activity would then transfer the caffeoyl moiety to malic acid to form phaselic acid. Both pathways predict a transferase capable of transferring a hydroxycinnamoyl moiety (either p-coumaroyl or caffeoyl) to malic acid. Also, these pathways are consistent with the observation that, at least in vitro, several characterized HCT enzymes are capable of transfer reactions utilizing either p-coumaroyl- or caffeoyl-CoA (Hoffmann et al., 2003; Niggeweg et al., 2004). The identification and characterization of two distinct HCTs from red clover, one of which has properties consistent with a role in phaselic acid biosynthesis, are reported here.  相似文献   

10.
Brachypodium distachyon (Brachypodium) is a model for the temperate grasses which include important cereals such as barley, wheat and oats. Comparison of the Brachypodium genome (accession Bd21) with those of the model dicot Arabidopsis thaliana and the tropical cereal rice (Oryza sativa) provides an opportunity to compare and contrast genetic pathways controlling important traits. We analysed the homologies of genes controlling the induction of flowering using pathways curated in Arabidopsis Reactome as a starting point. Pathways include those detecting and responding to the environmental cues of day length (photoperiod) and extended periods of low temperature (vernalization). Variation in these responses has been selected during cereal domestication, providing an interesting comparison with the wild genome of Brachypodium. Brachypodium Bd21 has well conserved homologues of circadian clock, photoperiod pathway and autonomous pathway genes defined in Arabidopsis and homologues of vernalization pathway genes defined in cereals with the exception of VRN2 which was absent. Bd21 also lacked a member of the CO family (CO3). In both cases flanking genes were conserved showing that these genes are deleted in at least this accession. Segmental duplication explains the presence of two CO-like genes in temperate cereals, of which one (Hd1) is retained in rice, and explains many differences in gene family structure between grasses and Arabidopsis. The conserved fine structure of duplications shows that they largely evolved to their present structure before the divergence of the rice and Brachypodium. Of four flowering-time genes found in rice but absent in Arabidopsis, two were found in Bd21 (Id1, OsMADS51) and two were absent (Ghd7, Ehd1). Overall, results suggest that an ancient core photoperiod pathway promoting flowering via the induction of FT has been modified by the recruitment of additional lineage specific pathways that promote or repress FT expression.  相似文献   

11.
Novel cyanogenic plants have been generated by the simultaneous expression of the two multifunctional sorghum (Sorghum bicolor [L.] Moench) cytochrome P450 enzymes CYP79A1 and CYP71E1 in tobacco (Nicotiana tabacum cv Xanthi) and Arabidopsis under the regulation of the constitutive 35S promoter. CYP79A1 and CYP71E1 catalyze the conversion of the parent amino acid tyrosine to p-hydroxymandelonitrile, the aglycone of the cyanogenic glucoside dhurrin. CYP79A1 catalyzes the conversion of tyrosine to p-hydroxyphenylacetaldoxime and CYP71E1, the subsequent conversion to p-hydroxymandelonitrile. p-Hydroxymandelonitrile is labile and dissociates into p-hydroxybenzaldehyde and hydrogen cyanide, the same products released from dhurrin upon cell disruption as a result of pest or herbivore attack. In transgenic plants expressing CYP79A1 as well as CYP71E1, the activity of CYP79A1 is higher than that of CYP71E1, resulting in the accumulation of several p-hydroxyphenylacetaldoxime-derived products in the addition to those derived from p-hydroxymandelonitrile. Transgenic tobacco and Arabidopsis plants expressing only CYP79A1 accumulate the same p-hydroxyphenylacetaldoxime-derived products as transgenic plants expressing both sorghum cytochrome P450 enzymes. In addition, the transgenic CYP79A1 Arabidopsis plants accumulate large amounts of p-hydroxybenzylglucosinolate. In transgenic Arabidopsis expressing CYP71E1, this enzyme and the enzymes of the pre-existing glucosinolate pathway compete for the p-hydroxyphenylacetaldoxime as substrate, resulting in the formation of small amounts of p-hydroxybenzylglucosinolate. Cyanogenic glucosides are phytoanticipins, and the present study demonstrates the feasibility of expressing cyanogenic compounds in new plant species by gene transfer technology to improve pest and disease resistance.  相似文献   

12.

Background

Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G) and syringyl (S) subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively.

Results

Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW) pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled.

Conclusions

Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.  相似文献   

13.
A promoter-trap screen allowed us to identify an Arabidopsis line expressing GUS in the root vascular tissues. T-DNA border sequencing showed that the line was mutated in the caffeic acid O-methyltransferase 1 gene (AtOMT1) and therefore deficient in OMT1 activity. Atomt1 is a knockout mutant and the expression profile of the AtOMT1 gene has been determined as well as the consequences of the mutation on lignins, on soluble phenolics, on cell wall digestibility, and on the expression of the genes involved in monolignol biosynthesis. In this mutant and relative to the wild type, lignins lack syringyl (S) units and contain more 5-hydroxyguaiacyl units (5-OH-G), the precursors of S-units. The sinapoyl ester pool is modified with a two-fold reduction of sinapoyl-malate in the leaves and stems of mature plants as well as in seedlings. In addition, LC-MS analysis of the soluble phenolics extracted from the seedlings reveals the occurrence of unusual derivatives assigned to 5-OH-feruloyl malate and to 5-OH-feruloyl glucose. Therefore, AtOMT1 enzymatic activity appears to be involved not only in lignin formation but also in the biosynthesis of sinapate esters. In addition, a deregulation of other monolignol biosynthetic gene expression can be observed in the Atomt1 mutant. A poplar cDNA encoding a caffeic acid OMT (PtOMT1) was successfully used to complement the Atomt1 mutant and restored both the level of S units and of sinapate esters to the control level. However, the over-expression of PtOMT1 in wild-type Arabidopsis did not increase the S-lignin content, suggesting that OMT is not a limiting enzyme for S-unit biosynthesis.these authors contributed equally to this workthese authors contributed equally to this work  相似文献   

14.
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, is propagatively transmitted by the small brown planthopper (Laodelphax striatellus Fallén). RBSDV causes rice black-streaked dwarf and maize rough dwarf diseases, which lead to severe yield losses in crops in China. Although several RBSDV proteins have been studied in detail, the functions of the nonstructural protein P7-1 are still largely unknown. To investigate the role of the P7-1 protein in virus pathogenicity, transgenic Arabidopsis thaliana plants were generated in which the P7-1 gene was expressed under the control of the 35S promoter. The RBSDV P7-1-transgenic Arabidopsis plants (named P7-1-OE) were male sterility. Flowers and pollen from P7-1-transgenic plants were of normal size and shape, and anthers developed to the normal size but failed to dehisce. The non-dehiscent anthers observed in P7-1-OE were attributed to decreased lignin content in the anthers. Furthermore, the reactive oxygen species levels were quite low in the transgenic plants compared with the wild type. These results indicate that ectopic expression of the RBSDV P7-1 protein in A. thaliana causes male sterility, possibly through the disruption of the lignin biosynthesis and H2O2-dependent polymerization pathways.  相似文献   

15.
Red clover (Trifolium pratense) leaves accumulate several μmol of phaselic acid [2-O-caffeoyl-l-malate] per gram fresh weight. Post-harvest oxidation of such o-diphenols to o-quinones by endogenous polyphenol oxidases (PPO) prevents breakdown of forage protein during storage. Forages like alfalfa (Medicago sativa) lack both foliar PPO activity and o-diphenols. Consequently, breakdown of their protein upon harvest and storage results in economic losses and release of excess nitrogen into the environment. Understanding how red clover synthesizes o-diphenols such as phaselic acid will help in the development of forages utilizing this natural system of protein protection. We have proposed biosynthetic pathways in red clover for phaselic acid that involve a specific hydroxycinnamoyl-CoA:malate hydroxycinnamoyl transferase. It is unclear whether the transfer reaction to malate to form phaselic acid involves caffeic acid or p-coumaric acid and subsequent hydroxylation of the resulting p-coumaroyl-malate. The latter would require a coumarate 3′-hydroxylase (C3′H) capable of hydroxylating p-coumaroyl-malate, an activity not previously described. Here, a cytochrome P450 C3′H (CYP98A44) was identified and its gene cloned from red clover. CYP98A44 shares 96 and 79% amino acid identity with Medicago truncatula and Arabidopsis thaliana C3′H proteins that are capable of hydroxylating p-coumaroyl-shikimate and have been implicated in monolignol biosynthesis. CYP98A44 mRNA is expressed in stems and flowers and to a lesser extent in leaves. Immune serum raised against CYP98A44 recognizes a membrane-associated protein in red clover stems and leaves and cross-reacts with C3′H proteins from other species. CYP98A44 expressed in Saccharomyces cerevisiae is capable of hydroxylating p-coumaroyl-shikimate, but not p-coumaroyl-malate. This finding indicates that in red clover, phaselic acid is likely formed by transfer of a caffeoyl moiety to malic acid, although the existence of a second C3′H capable of hydroxylating p-coumaroyl-malate cannot be definitively ruled out.  相似文献   

16.
Grasses are a predominant source of nutritional energy for livestock systems around the world. Grasses with high lignin content have lower energy conversion efficiencies for production of bioenergy either in the form of ethanol or to milk and meat through ruminants. Grass lignins are uniquely acylated with p-coumarates (pCA), resulting from the incorporation of monolignol p-coumarate conjugates into the growing lignin polymer within the cell wall matrix. The required acyl-transferase is a soluble enzyme (p-coumaroyl transferase, pCAT) that utilizes p-coumaroyl-CoenzymeA (pCA-CoA) as the activated donor molecule and sinapyl alcohol as the preferred acceptor molecule. Grasses (C3and C4) were evaluated for cell wall characteristics; pCA, lignin, pCAT activity, and neutral sugar composition. All C3 and C4 grasses had measurable pCAT activity, however the pCAT activities did not follow the same pattern as the pCA incorporation into lignin as expected.  相似文献   

17.
Independent down-regulation of genes encoding p-coumarate 3-hydroxylase (C3H) and hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) has been previously shown to reduce the recalcitrance of alfalfa and thereby improve the release of fermentable sugars during enzymatic hydrolysis. In this study, ball-milled lignins were isolated from wild-type control, C3H, and HCT gene down-regulated alfalfa plants. One- and two-dimensional nuclear magnetic resonance (NMR) techniques were utilized to determine structural changes in the ball-milled alfalfa lignins resulting from this genetic engineering. After C3H and HCT gene down-regulation, significant structural changes had occurred to the alfalfa ball-milled lignins compared to the wild-type control. A substantial increase in p-hydroxyphenyl units was observed in the transgenic alfalfa ball-milled lignins as well as a concomitant decrease in guaiacyl and syringyl units. Two-dimensional 13C–1H heteronuclear single quantum coherence correlation NMR, one-dimensional distortionless enhancement by polarization transfer-135, and 13C NMR measurement showed a noteworthy decrease in methoxyl group and β-O-4 linkage contents in these transgenic alfalfa lignins. 13C NMR analysis estimated that C3H gene down-regulation reduced the methoxyl content by ~55–58% in the ball-milled lignin, while HCT down-regulation decreased methoxyl content by ~73%. The gene down-regulated C3H and HCT transgenic alfalfa lignin was largely a p-hydroxyphenyl (H) rich type lignin. Compared to the wild-type plant, the C3H and HCT transgenic lines had an increase in relative abundance of phenylcoumaran and resinol in the ball-milled lignins.  相似文献   

18.
Studying lignin-biosynthetic-pathway mutants and transgenics provides insights into plant responses to perturbations of the lignification system, and enhances our understanding of normal lignification. When enzymes late in the pathway are downregulated, significant changes in the composition and structure of lignin may result. NMR spectroscopy provides powerful diagnostic tools for elucidating structures in the difficult lignin polymer, hinting at the chemical and biochemical changes that have occurred. COMT (caffeic acid O-methyl transferase) downregulation in poplar results in the incorporation of 5-hydroxyconiferyl alcohol into lignins via typical radical coupling reactions, but post-coupling quinone methide internal trapping reactions produce novel benzodioxane units in the lignin. CAD (cinnamyl alcohol dehydrogenase) downregulation results in the incorporation of the hydroxycinnamyl aldehyde monolignol precursors intimately into the polymer. Sinapyl aldehyde cross-couples 8-O-4 with both guaiacyl and syringyl units in the growing polymer, whereas coniferyl aldehyde cross-couples 8-O-4 only with syringyl units, reflecting simple chemical cross-coupling propensities. The incorporation of hydroxycinnamyl aldehyde and 5-hydroxyconiferyl alcohol monomers indicates that these monolignol intermediates are secreted to the cell wall for lignification. The recognition that novel units can incorporate into lignins portends significantly expanded opportunities for engineering the composition and consequent properties of lignin for improved utilization of valuable plant resources.  相似文献   

19.
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.  相似文献   

20.
Lignin acylation, the decoration of hydroxyls on lignin structural units with acyl groups, is common in many plant species. Monocot lignins are decorated with p-coumarates by the polymerization of monolignol p-coumarate conjugates. The acyltransferase involved in the formation of these conjugates has been identified in a number of model monocot species, but the effect of monolignol p-coumarate conjugates on lignification and plant growth and development has not yet been examined in plants that do not inherently possess p-coumarates on their lignins. The rice (Oryza sativa) p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE gene was introduced into two eudicots, Arabidopsis (Arabidopsis thaliana) and poplar (Populus alba × grandidentata), and a series of analytical methods was used to show the incorporation of the ensuing monolignol p-coumarate conjugates into the lignin of these plants. In poplar, specifically, the addition of these conjugates did not occur at the expense of the naturally incorporated monolignol p-hydroxybenzoates. Plants expressing the p-COUMAROYL-Coenzyme A MONOLIGNOL TRANSFERASE transgene can therefore produce monolignol p-coumarate conjugates essentially without competing with the formation of other acylated monolignols and without drastically impacting normal monolignol production.Lignification of plant cell walls prototypically involves the polymerization of the monolignols (MLs), p-coumaryl alcohol, coniferyl alcohol (CA), and sinapyl alcohol (SA), predominantly by stepwise radical coupling of each monomer to the phenolic end of the growing polymer (Sarkanen and Ludwig, 1971; Boerjan et al., 2003; Ralph et al., 2004). The contribution of various MLs to the lignins depends on plant species, cell type, plant tissue, and tissue age. Although the majority of the lignin polymer is derived from these three MLs, the lignification process has a high degree of metabolic plasticity (Boerjan et al., 2003; Ralph et al., 2004; Ralph, 2007; Vanholme et al., 2012). Of particular interest are ML conjugates in which the ester group can be acetate (Ac; Sarkanen et al., 1967; Ralph, 1996; Ralph and Lu, 1998; Del Río et al., 2007; del Río et al., 2008; Martínez et al., 2008), p-hydroxybenzoate (pBz; Venverloo, 1971; Monties and Lapierre, 1981; Landucci et al., 1992; Tomimura, 1992a, 1992b; Hibino et al., 1994; Sun et al., 1999; Kuroda et al., 2001; Lu et al., 2004, 2015; Morreel et al., 2004; Rencoret et al., 2013), p-coumarate (pCA; Monties and Lapierre, 1981; Ralph et al., 1994; Crestini and Argyropoulos, 1997; del Río et al., 2008, 2012a, 2012b; Withers et al., 2012; Rencoret et al., 2013; Petrik et al., 2014), or ferulate (FA; Grabber et al., 2008; Ralph, 2010; Wilkerson et al., 2014). In all cases, the MLs are acylated before polymerization as proven by the presence in the lignins of unique β-β coupling products that only arise when one or both of the MLs are acylated, preventing the formation of the typical resinols from internal trapping of the quinone methide intermediates by the γ-OH (Lu and Ralph, 2002, 2008; Del Río et al., 2007; Lu et al., 2015).The BAHD acyltransferase, FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT), was recently identified in Angelica sinensis and transformed into poplar (Populus alba × grandidentata), which naturally incorporates other acylated MLs, namely ML-pBz conjugates, into its lignin (Wilkerson et al., 2014). Plants that incorporate ML-FAs into their lignins have the potential to be particularly important economically, because their lignin backbones are permeated with readily cleavable ester bonds, facilitating lignin breakdown and removal under alkaline pretreatment conditions. Determining the extent to which ML-FAs are incorporated into the lignin polymer is, however, extremely difficult because of the diversity of products generated during the polymerization events, which is described in the supplemental information in Wilkerson et al., 2014.There is currently only one technique, derivatization followed by reductive cleavage (DFRC), that can release diagnostic chemical marker compounds from lignins containing ML-FAs (Lu and Ralph, 2014; Wilkerson et al., 2014). The DFRC method selectively cleaves β-ethers while leaving ester linkages intact. This technique was recently used to show that ML-FA conjugates are fully incorporated into the lignin of the FMT poplar (Wilkerson et al., 2014), but the extent of incorporation, the spatial distribution, the exact mechanism of delivery to the developing cell wall, and the efficiency of incorporation remain largely unknown.The biological role of pCA in lignin has been highly speculative. It is hypothesized that the pCA moieties may function as a radical sensitizer (Takahama and Oniki, 1996, 1997; Takahama et al., 1996; Ralph et al., 2004; Hatfield et al., 2008; Ralph, 2010). Peroxidases and/or laccases readily oxidize pCA to a radical but are poor oxidizers for SA. Free radicals of pCA readily undergo radical transfer to SA, which in turn, forms a homodimer or couples to the end of a growing polymer chain. Conjugating pCA to an ML, like SA, to form SA-pCA, the most prevalent ML-pCA conjugate in grasses, creates a compound with a built-in radical sensitizer that can participate in the polymerization event. The prevalence of these conjugates in potential biofuel crops and the impact that these ester-linked conjugates have on the lignin polymer during pretreatment and downstream fermentation processes have driven the search to find the genes and their enzymes responsible for acylating MLs in monocots (Withers et al., 2012; Marita et al., 2014; Petrik et al., 2014; Wilkerson et al., 2014).In rice (Oryza sativa), enzymes have been characterized that function specifically in the addition of pCA onto hemicelluloses (Bartley et al., 2013) or lignin (Withers et al., 2012; Petrik et al., 2014). The p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT) was identified as one of many grass-specific BAHD acyltransferases produced by rice and found to coexpress with many ML biosynthetic enzymes (Withers et al., 2012). The enzyme preferentially forms a γ-ester through its specificity toward p-coumaroyl-CoA and an ML, and has kinetic efficiency with p-coumaryl alcohol > SA > CA. In most grasses, the PMT enzyme predominantly produces SA-pCA conjugates that are then incorporated into the lignin polymer (Petrik et al., 2014).To test the role of PMT during cell wall lignification, genetic manipulation of PMT genes has been performed in Brachypodium distachyon and maize (Zea mays), two model monocots. The suppression and overexpression of a BdPMT revealed the PMT to be involved only in the acylation of MLs before polymerization and not in the acylation of hemicelluloses (Petrik et al., 2014). RNA interference-mediated suppression of BdPMT resulted in decreased incorporation of ML-pCA conjugates into the cell wall without adversely affecting growth, height, or digestibility of the mature plants. Even deleterious mutations in the BdPMT gene, which resulted in a complete absence of pCA-acylating B. distachyon lignins, did not affect plant growth or development (Petrik et al., 2014). The arabinose-bound FA and pCA levels remained virtually unchanged in the PMT-misregulated plants, illustrating the specificity of the PMT enzyme for the p-coumaroyl-CoA substrate and its ML acylation. The PMT enzyme identified in maize (pCAT = ZmPMT) also displayed the highest catalytic efficiency with p-coumaroyl-CoA and SA as substrates (Marita et al., 2014). RNAi-mediated suppression of ZmPMT also resulted in decreased production of the ML conjugates. The effect on the lignin polymer when introducing PMT into plants that do not normally express a homologous enzyme is, however, unknown.pCAs, because they favor radical transfer over radical coupling, are overwhelmingly seen as free-phenolic pendant entities on the lignin polymer (Ralph et al., 1994; Ralph, 2010). As a result, the pCA itself can be completely quantified by simple saponification. The units to which the pCA is attached are, like their normal ML-derived counterparts, not fully releasable from lignin as identifiable monomers (during degradative reactions), but the pCA’s terminal location makes p-coumaroylated units more readily releasable and detectable than if they participated in lignification (as FAs do). Examining the effect of PMT and its resulting conjugates on lignification in plants that do not naturally produce such conjugates will contribute to our understanding of the role of PMT in lignification in general.In this study, we aimed to assess the ability of the model eudicot plants Arabidopsis (Arabidopsis thaliana) and poplar, neither of which naturally produces ML-pCA conjugates, to express a PMT gene and incorporate these novel conjugates into their cell wall lignins. We also investigated the effect that the introduction of PMT has on the native levels of ML-pBz conjugates in poplar lignin. Various analytical techniques were optimized and used to examine the cell walls of the transgenic plants for pCA conjugates and determine whether they were specifically incorporated into the lignin polymer in the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号