首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma is the most common primary malignant bone tumor and has a high fatality rate in children and adolescents. Recently, an increasing amount of evidence has demonstrated that lncRNAs have crucial roles in regulating biological characteristics in malignant tumors. Therefore, this research was carried out to uncover the biological function and the potential molecular mechanism of SNHG12 in osteosarcoma. In this study, we found that SNHG12 was significantly upregulated in both osteosarcoma tissues and cell lines and osteosarcoma patients with high levels of SNHG12 tended to have a poor prognosis. We evaluated the biological function of SNHG12 in 143B and U2OS cells and show that the downregulation of SNHG12 suppressed cell proliferation by blocking cell cycle progression at the G0/G1 phase and weakened cell invasion and migration abilities. Dual-luciferase reporter and RIP assays were conducted to confirm that SNHG12 functioned as a ceRNA, modulating the expression of Notch2 by sponging miR-195-5p in osteosarcoma. We further demonstrate that Notch2 played a crucial role in activating the Notch signaling pathway. In conclusion, SNHG12 might serve as a valuable biomarker and prognosis factor in osteosarcoma patients. The SNHG12/miR-195-5p/Notch2-Notch signaling pathway axis might become a novel therapeutic for osteosarcoma.  相似文献   

2.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   

3.
The gastric cancer (GC) patients commonly have a poor prognosis due to its invasiveness and distant metastasis. Growing evidence proved that aberrant long non-coding RNAs (lncRNAs) expression contributes to tumor development and progression. LncRNA SNHG15 has been reported to be involved in many different kinds of cancer, while its role in GC remains unclear. In the present study, we found that SNHG15 was up-regulated in GC tissues and cell lines. Silencing SNHG15 suppressed proliferation migration, invasion and promoted apoptosis of AGS cells. More importantly, microRNA-506-5p (miR-506-5p) was predicted as a direct target of SNHG15 by binding its 3′-UTR and further verified using luciferase reporter assay. Meanwhile, the results of rescue experiments revealed that knockdown of miR-506-5p expression reversed the functional effects of SNHG15 silenced cell proliferation, migration, invasion and apoptosis. In conclusion, our findings revealed that SNHG15 executed oncogenic properties in GC progression through targeting miR-506-5p, which might provide a novel target for the GC treatment.  相似文献   

4.
Emerging evidence highlights the key regulatory roles of long noncoding RNAs (lncRNAs) in the initiation and progression of numerous malignancies. The lncRNA identified as differentiation antagonizing nonprotein coding RNA (DANCR) is a novel lncRNA widely involved in the development of multiple human cancers. However, the function of DANCR and its potential molecular mechanism in cervical cancer remain unclear. In this study, we discovered that DANCR was significantly elevated in cervical cancer tissues and cells, and was closely correlated with poor prognosis of cervical cancer patients. In addition, knockdown of DANCR inhibited proliferation, migration, and invasion of cervical cancer cells in vitro, indicating that DANCR functioned as an oncogene in cervical cancer. Moreover, we verified that DANCR could directly bind to miR-335-5p, isolating miR-335-5p from its target gene Rho-associated coiled-coil containing protein kinase 1 (ROCK1). Functional analysis showed that DANCR regulated ROCK1 expression by competitively binding to miR-335-5p. Further cellular behavioral experiments revealed that miR-335-5p mimics and ROCK1 knockdown reversed the effects of upregulated DANCR on proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of cervical cancer cells by rescue assays. In summary, this study demonstrated that DANCR promoted cervical cancer progression by functioning as a competing endogenous RNA (ceRNA) to regulate ROCK1 expression via sponging miR-335-5p, suggesting a novel potential therapeutic target for cervical cancer.  相似文献   

5.
6.
7.
目的探讨LncRNA AC130710通过miR-129-5P/WNT4轴对子宫内膜癌细胞(HEC-1A细胞)增殖、凋亡及上皮间质转化(EMT)的影响及机制研究。 方法通过实时荧光定量PCR检测LncRNA AC130710、miR-129-5P和WNT4在子宫内膜癌细胞(HEC-1A细胞)和人子宫内膜上皮细胞(HEEC)中的表达。细胞分别转染(1)siRNA NC、AC130710 siRNA、WNT4 siRNA;(2)inhibitor NC、miR-129-5P inhibitor;(3)pcDNA-3.1 (+)+mimics NC、pcDNA-AC130710+mimics NC、pcDNA-3.1 (+)+miR-129-5P mimics、pcDNA-AC130710+miR-129-5P mimics。MTT实验检测LncRNA AC130710、miR-129-5P和WNT4的表达对HEC-1A细胞增殖能力的影响;Western blot检测LncRNA AC130710、miR-129-5P和WNT4的表达对HEC-1A细胞凋亡相关蛋白B淋巴细胞瘤-2基因相关蛋白X (Bax)、剪切的半胱氨酰天冬氨酸特异性蛋白酶-3 (cleaved caspase-3)、cleaved caspase-9和B淋巴细胞瘤-2基因(Bcl-2)表达的影响;Western blot检测LncRNA AC130710、miR-129-5P和WNT4的表达对HEC-1A细胞EMT的影响。miRanda和双荧光素酶报告基因实验分析LncRNA AC130710和miR-129-5P之间的关系,TargetScan数据库分析miR-129-5P与WNT4的相关性,双荧光素酶报告基因检测miR-129-5P与WNT4的相互作用;RT-qPCR法检测LncRNA AC130710通过miR-129-5P对WNT4表达的影响。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,两两比较采用LSD-t检验。 结果与HEEC细胞比较,HEC-1A细胞中AC130710表达水平(1.86±0.21比0.85±0.06)、WNT4表达水平(1.88±0.26比1.08±0.12)升高;HEC-1A细胞中miR-129-5P表达水平(0.89±0.16比1.76±0.08)降低。与转染siRNA NC比较,转染AC130710 siRNA细胞内Bax、cleaved caspase-3、cleaved caspase-9、E-cadherin蛋白相对表达水平[(1.37±0.14比0.84±0.21),(1.08±0.16比0.37±0.07),(1.26±0.24比0.39±0.06),(1.87±0.17比1.32±0.26)]上升,Bcl-2、N-cadherin、Snail和Vimentin蛋白相对表达水平[(0.38±0.08比1.18±0.14),(0.36±0.04比0.85±0.24),(0.35±0.09比1.12±0.18),(0.42±0.10比1.26±0.27)]下降;与转染inhibitor NC比较,转染miR-129-5P inhibitor细胞的Bcl-2、N-cadherin、Snail和Vimentin蛋白相对表达水平[(0.98±0.07比0.65±0.08),(1.39±0.15比0.68±0.09),(0.95±0.08比0.42±0.06),(1.16±0.16比0.54±0.02)]上升,Bax、cleaved caspase-3、cleaved caspase-9、E-cadherin蛋白相对表达水平[(0.27±0.09比0.85±0.13),(0.48±0.05比1.16±0.28),(0.52±0.14比1.19±0.15),(0.43±0.09比1.08±0.26)]下降;与转染siRNA NC比较,转染WNT4 siRNA细胞的Bcl-2、N-cadherin、Snail和Vimentin蛋白相对表达水平[(0.23±0.08比0.84±0.12),(0.28±0.09比1.14±0.17),(0.42±0.23比1.06±0.15),(0.35±0.08比1.13±0.08)]降低,Bax、cleaved caspase-3、cleaved caspase-9、E-cadherin蛋白相对表达水平[(0.96±0.12比0.42±0.08),(1.13±0.25比0.45±0.06),(1.54±0.23比0.72±0.12),(1.87±0.24比1.26±0.18)]上升。 结论LncRNA AC130710可通过miR-129-5P/WNT4轴调控子宫内膜癌HEC-1A细胞增殖、凋亡及EMT。  相似文献   

8.
9.
Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p–SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p–SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.Subject terms: Gastrointestinal cancer, Non-coding RNAs  相似文献   

10.
11.
LBX2-AS1 is a long non-coding RNA that facilitates the development of gastrointestinal cancers and lung cancer, but its participation in ovarian cancer development remained uninvestigated. Clinical data retrieved from TCGA ovarian cancer database and the clinography of 60 ovarian cancer patients who received anti-cancer treatment in our facility were analysed. The overall cell growth, colony formation, migration, invasion, apoptosis and tumour formation on nude mice of ovarian cancer cells were evaluated before and after lentiviral-based LBX2-AS1 knockdown. ENCORI platform was used to explore LBX2-AS1-interacting microRNAs and target genes of the candidate microRNAs. Luciferase reporter gene assay and RNA pulldown assay were used to verify the putative miRNA-RNA interactions. Ovarian cancer tissue specimens showed significant higher LBX2-AS1 expression levels that non-cancerous counterparts. High expression level of LBX2-AS1 was significantly associated with reduced overall survival of patients. LBX2-AS1 knockdown significantly down-regulated the cell growth, colony formation, migration, invasion and tumour formation capacity of ovarian cancer cells and increased their apoptosis in vitro. LBX2-AS1 interacts with and thus inhibits the function of miR-455-5p and miR-491-5p, both of which restrained the expression of E2F2 gene in ovarian cancer cells via mRNA targeting. Transfection of miRNA inhibitors of these two miRNAs or forced expression of E2F2 counteracted the effect of LBX2-AS1 knockdown on ovarian cancer cells. LBX2-AS1 was a novel cancer-promoting lncRNA in ovarian cancer. This lncRNA increased the cell growth, survival, migration, invasion and tumour formation of ovarian cancer cells by inhibiting miR-455-5p and miR-491-5p, thus liberating the expression of E2F2 cancer-promoting gene.  相似文献   

12.
Accepted as a malignant tumor worldwide, cervical cancer (CC) has attracted much attention for its high incidence and mortality rates. Previous studies have elucidated the critical regulatory function that long noncoding RNAs (lncRNAs) exert on the tumorigenesis and progression of diverse tumors. Although multiple investigations have depicted that LINC00958 has a great impact on the complex biological process of many cancers, knowledge concerning the regulatory role of LINC00958 in CC remains limited and needs to be further explored. In our study, LINC00958 expression was evidently overexpressed in CC tissues and cells. Besides this, LINC00958 negatively regulated miR-625-5p expression and was verified to bind with miR-625-5p in CC. Subsequently, it was testified by a series of experiments that LINC00958 promotes CC cell proliferation and metastasis by sponging miR-625-5p. Furthermore, the leucine-rich repeat containing the eight family member E (LRRC8E) could bind with miR-625-5p, and its expression was negatively modulated by miR-625-5p, whereas positively regulated by LINC00958 in CC. Final rescue assays verified the effects of LINC0095/LRRC8E interaction and miR-625-5p/LRRC8E interaction on CC cell proliferation and metastasis. Collectively, LINC00958 facilitates CC cell proliferation and metastasis via the miR-625-5p/LRRC8E axis.  相似文献   

13.

Cerebrovascular diseases have a high mortality and disability rate in developed countries. Endothelial cell injury is the main cause of atherosclerosis and cerebrovascular disease. Long non-coding RNA (lncRNA) has been proved to participate in the progression of endothelial cell. Our study aimed to develop the function of lncRNA opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell injury. The expression of OIP5-AS1, miR-98-5p and High-mobility group protein box-1 (HMGB1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry were used to detect the cell proliferation and apoptosis. The levels of cyclinD1, Bcl-2 Associated X Protein (Bax), Cleaved-caspase-3, Toll like receptors 4 (TLR4), phosphorylation of p65 (p-P65), phosphorylation of nuclear factor-kappa B inhibitor α (p-IκB-α) and HMGB1 were measured by Western blot. The concentrations of Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The production of Reactive oxygen species (ROS), Superoxide Dismutase (SOD) and malondialdehyde (MDA) was detected by the corresponding kit. The targets of OIP5-AS and miR-98-5p were predicted by starBase 3.0 and TargetScan and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression of OIP5-AS1 was upregulated, while miR-98-5p was downregulated in ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Functionally, knockdown of OIP5-AS1 induced proliferation and inhibited apoptosis, inflammatory injury and oxidative stress injury in ox-LDL-induced HUVEC cells. Interestingly, miR-98-5p was a target of OIP5-AS1 and miR-98-5p inhibition abolished the effects of OIP5-AS1 downregulation on ox-LDL-induced HUVECs injury. More importantly, miR-98-5p directly targeted HMGB1, and OIP5-AS1 regulated the expression of HMGB1 by sponging miR-98-5p. Finally, OIP5-AS1 regulated the TLR4/nuclear factor-kappa B (NF-κB) signaling pathway through miR-98-5p/HMGB1 axis. LncRNA OIP5-AS1 accelerates ox-LDL-induced endothelial cell injury through regulating HMGB1 mediated by miR-98-5p via the TLR4/NF-κB signaling pathway.

  相似文献   

14.
15.
16.
Diabetic cardiomyopathy (DbCM) is responsible for increased morbidity and mortality in patients with diabetes and heart failure. However, the pathogenesis of DbCM has not yet been identified. Here, we investigated the important role of lncRNA-ZFAS1 in the pathological process of DbCM, which is associated with ferroptosis. Microarray data analysis of DbCM in patients or mouse models from GEO revealed the significance of ZFAS1 and the significant downregulation of miR-150-5p and CCND2. Briefly, DbCM was established in high glucose (HG)–treated cardiomyocytes and db/db mice to form in vitro and in vivo models. Ad-ZFAS1, Ad-sh-ZFAS1, mimic miR-150-5p, Ad-CCND2 and Ad-sh-CCND2 were intracoronarily administered to the mouse model or transfected into HG-treated cardiomyocytes to determine whether ZFAS1 regulates miR-150-5p and CCND2 in ferroptosis. The effect of ZFAS1 on the left ventricular myocardial tissues of db/db mice and HG-treated cardiomyocytes, ferroptosis and apoptosis was determined by Masson staining, immunohistochemical staining, Western blotting, monobromobimane staining, immunofluorescence staining and JC-1 staining. The relationships among ZFAS1, miR-150-5p and CCND2 were evaluated using dual-luciferase reporter assays and RNA pull-down assays. Inhibition of ZFAS1 led to reduced collagen deposition, decreased cardiomyocyte apoptosis and ferroptosis, and attenuated DbCM progression. ZFAS1 sponges miR-150-5p to downregulate CCND2 expression. Ad-sh-ZFAS1, miR-150-5p mimic, and Ad-CCND2 transfection attenuated ferroptosis and DbCM development both in vitro and in vivo. However, transfection with Ad-ZFAS1 could reverse the positive effects of miR-150-5p mimic and Ad-CCND2 in vitro and in vivo. lncRNA-ZFAS1 acted as a ceRNA to sponge miR-150-5p and downregulate CCND2 to promote cardiomyocyte ferroptosis and DbCM development. Thus, ZFAS1 inhibition could be a promising therapeutic target for the treatment and prevention of DbCM.  相似文献   

17.
Long noncoding RNAs (lncRNAs) play crucial roles in tumor development of osteosarcoma (OS). LncRNA PCAT6 was involved in the progression of multiple human cancers. However, the biological function of PCAT6 in OS remains largely unknown. We found that PCAT6 was elevated in OS tissues relative to that in their adjacent normal tissues. The upregulation of PCAT6 was positively associated with metastasis status and advanced stages and predicted poor overall and progression-free survivals in patients with OS. Functionally, silencing PCAT6 inhibited the proliferation, migration and invasion abilities of OS cells. Mechanistically, PCAT6, acting as a competitive endogenous RNA, upregulated expression of TGFBR1 and TGFBR2 to activate TGF-β pathway via sponging miR-185–5p. This study uncovers a novel underlying molecular mechanism of PCAT6-miR-185-5p-TGFBR1/2-TGF-β signaling axis in promoting tumor progression in OS, which indicates that PCAT6 may serve as a promising prognostic factor and therapeutic target again OS.  相似文献   

18.
Molecular and Cellular Biochemistry - Glioma is characterized by high morbidity, high mortality and poor prognosis. Recent studies exhibited that lncRNA CCAT2 is overexpressed in glioma and...  相似文献   

19.
The aim of this study is to investigate the regulatory mechanism of circPDSS1/miR-186-5p/NEK2 axis on the viability and proliferation in gastric cancer (GC) cell line. Differentially expressed circRNAs, miRNAs, and mRNAs in GC tissues and paracarcinoma tissues were analyzed using gene chips GSE83521, GSE89143, and GSE93415. Then, the expression of circPDSS1, miR-186-5p, and NEK2 was analyzed via quantitative real-time polymerase chain reaction (qRT-PCR). Survival analysis was adopted to explore the association between the circPDSS1 expression and the prognosis of GC. The effect of circPDSS1 on GC cell cycle and apoptosis was verified with the flow cytometry. Targeting relationships among circPDSS1, miR-186-5p, and NEK2 were predicted via bioinformatics analysis and demonstrated by the dual-luciferase reporter assay. Our results showed that circPDSS1 and NEK2 were high-expressed whereas miR-186-5p was low-expressed in GC tissues and cells. CircPDSS1 promoted GC cell cycle and inhibited apoptosis by sponging miR-186-5p, while miR-186-5p inhibited cell cycle and promoted apoptosis by targeting NEK2. Thus, circPDSS1 acts as a tumor promoter by regulating miR-186-5p and NEK2, which could be a potential biomarker and therapeutic target for the management of GC.  相似文献   

20.
Li  Cuiping  Dong  Bing  Xu  Xiaomeng  Li  Yuewen  Wang  Yan  Li  Xingmei 《Cytotechnology》2021,73(3):363-372

Ovarian cancer is one of the leading lethal gynecological cancers, causing serious harm to the health of female populations. Growing studies emphasize that lncRNAs serve as significant regulators in the tumorigenesis and evolution of numerous malignancies, including ovarian cancer. Recently, the oncogenic activity of lncRNA ARAP1-AS1 has been justified in a variety of cancers. However, the potential function of ARAP1-AS1 in ovarian cancer development is still unclear. Herein, we firstly revealed the expression profile of ARAP1-AS1 in ovarian cancer. Compared to normal samples and cells, upregulation of ARAP1-AS1 was observed in tissues and cells of ovarian cancer. Therewith, it was disclosed that knockdown of ARAP1-AS1 alleviated the carcinogenicity of ovarian cancer cells. Besides, our findings delineated that ARAP1-AS1 silence inhibited the expression of oncogene PLAGL2. Considering that ARAP1-AS1 was principally expressed in the the cytoplasm of ovarian cancer cells, we speculated that ARAP1-AS1 facilitated ovarian cancer progression via functioning as a ceRNA. Further investigations indicated that ARAP1-AS1 promoted PLAGL2 expression by competitively binding with miR-4735-3p. Of note, ARAP1-AS1 contributed to the malignant phenotypes of ovarian cancer cells through modulation of miR-4735-3p/PLAGL2 axis, revealing ARAP1-AS1 as a promising therapeutic target for ovarian cancer patients.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号