首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The SOS system   总被引:2,自引:0,他引:2  
R d'Ari 《Biochimie》1985,67(3-4):343-347
In the bacterium Escherichia coli DNA damaging treatments such as ultraviolet or ionizing radiation induce a set of functions called collectively the SOS response, reviewed here. The regulation of the SOS response involves a repressor, the LexA protein, and an inducer, the RecA protein. After DNA damage an effector molecule is produced--possibly single stranded DNA--which activates the RecA protein to a form capable of catalysing proteolytic cleavage of LexA. The repressors of certain temperate prophages are cleaved under the same conditions, resulting in lysogenic induction. SOS functions are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after the DNA damage is repaired, and possibly in cell death when DNA damage is too extensive. The SOS response also includes several chromosomal genes of unknown function, a number of plasmid encoded genes (bacteriocins, mutagenesis), and lysogenic induction of certain prophages. DNA damaging treatments seem to induce DNA repair and mutagenic activities and proviral development in many species, including mammalian cells. In general, substances which are genotoxic to higher eukaryotes induce the SOS response in bacteria. This correlation is the basis of the numerous bacterial tests for genotoxicity and carcinogenicity.  相似文献   

4.
The here-reported identification of the LexA-binding sequence of Bdellovibrio bacteriovorus, a bacterial predator belonging to the delta-Proteobacteria, has made possible a detailed study of its LexA regulatory network. Surprisingly, only the lexA gene and a multiple gene cassette including dinP and dnaE homologues are regulated by the LexA protein in this bacterium. In vivo expression analyses have confirmed that this gene cassette indeed forms a polycistronic unit that, like the lexA gene, is DNA damage inducible in B. bacteriovorus. Conversely, genes such as recA, uvrA, ruvCAB, and ssb, which constitute the canonical core of the Proteobacteria SOS system, are not repressed by the LexA protein in this organism, hinting at a persistent selective pressure to maintain both the lexA gene and its regulation on the reported multiple gene cassette. In turn, in vitro experiments show that the B. bacteriovorus LexA-binding sequence is not recognized by other delta-Proteobacteria LexA proteins but binds to the cyanobacterial LexA repressor. This places B. bacteriovorus LexA at the base of the delta-Proteobacteria LexA family, revealing a high degree of conservation in the LexA regulatory sequence prior to the diversification and specialization seen in deeper groups of the Proteobacteria phylum.  相似文献   

5.
The SOS response that responds to DNA damage induces many genes that are under LexA repression. A detailed examination of LexA regulons using genome-wide techniques has recently been undertaken in both Escherichia coli and Bacillus subtilis. These extensive and elegant studies have now charted the extent of the LexA regulons, uncovered many new genes, and exposed a limited overlap in the LexA regulon between the two bacteria. As more bacterial genomes are analysed, more curiosities in LexA regulons arise. Several notable examples include the discovery of a LexA-like protein, HdiR, in Lactococcus lactis, organisms with two lexA genes, and small DNA damage-inducible cassettes under LexA control. In the cyanobacterium Synechocystis, genetic and microarray studies demonstrated that a LexA paralogue exerts control over an entirely different set of carbon-controlled genes and is crucial to cells facing carbon starvation. An examination of SOS induction evoked by common therapeutic drugs has shed new light on unsuspected consequences of drug exposure. Certain antibiotics, most notably fluoroquinolones such as ciprofloxacin, can induce an SOS response and can modulate the spread of virulence factors and drug resistance. SOS induction by beta-lactams in E. coli triggers a novel form of antibiotic defence that involves cell wall stress and signal transduction by the DpiAB two-component system. In this review, we provide an overview of these new directions in SOS and LexA research with emphasis on a few themes: identification of genes under LexA control, the identification of new endogenous triggers, and antibiotic-induced SOS response and its consequences.  相似文献   

6.
7.
Many species of bacteria harbor multiple prophages in their genomes. Prophages often carry genes that confer a selective advantage to the bacterium, typically during host colonization. Prophages can convert to infectious viruses through a process known as induction, which is relevant to the spread of bacterial virulence genes. The paradigm of prophage induction, as set by the phage Lambda model, sees the process initiated by the RecA-stimulated self-proteolysis of the phage repressor. Here we show that a large family of lambdoid prophages found in Salmonella genomes employs an alternative induction strategy. The repressors of these phages are not cleaved upon induction; rather, they are inactivated by the binding of small antirepressor proteins. Formation of the complex causes the repressor to dissociate from DNA. The antirepressor genes lie outside the immunity region and are under direct control of the LexA repressor, thus plugging prophage induction directly into the SOS response. GfoA and GfhA, the antirepressors of Salmonella prophages Gifsy-1 and Gifsy-3, each target both of these phages' repressors, GfoR and GfhR, even though the latter proteins recognize different operator sites and the two phages are heteroimmune. In contrast, the Gifsy-2 phage repressor, GtgR, is insensitive to GfoA and GfhA, but is inactivated by an antirepressor from the unrelated Fels-1 prophage (FsoA). This response is all the more surprising as FsoA is under the control of the Fels-1 repressor, not LexA, and plays no apparent role in Fels-1 induction, which occurs via a Lambda CI-like repressor cleavage mechanism. The ability of antirepressors to recognize non-cognate repressors allows coordination of induction of multiple prophages in polylysogenic strains. Identification of non-cleavable gfoR/gtgR homologues in a large variety of bacterial genomes (including most Escherichia coli genomes in the DNA database) suggests that antirepression-mediated induction is far more common than previously recognized.  相似文献   

8.
9.
10.
11.
Epithelial cells are highly regarded as the first line of defense against microorganisms, but the mechanisms used to control bacterial diseases are poorly understood. A component of the DNA damage repair regulon, SulA, is essential for UPEC virulence in a mouse model for human urinary tract infection, suggesting that DNA damage is a key mediator in the primary control of pathogens within the epithelium. In this study, we examine the role of DNA damage repair regulators in the intracellular lifestyle of UPEC within superficial bladder epithelial cells. LexA and RecA coordinate various operons for repair of DNA damage due to exogenous and endogenous agents and are known regulators of sulA. UPEC strains defective in regulation of the SOS response mediated by RecA and LexA display attenuated virulence in immunocompetent mice within the first 6 h post infection. RecA and LexA regulation of the SOS regulon is dispensable in immunocompromised mice. These data suggest that epithelial cells produce sufficient levels of DNA damaging agents, such that the bacterial DNA damage repair response is essential, as a means to control invading bacteria. Since many pathogens interact with the epithelium before exposure to professional phagocytes, it is likely that adaptation to oxidative radicals during intracellular growth provides additional protection from killing by innate immune phagocytes.  相似文献   

12.
13.
14.
LexA蛋白首先在大肠杆菌(Escherichia coli)中作为SOS反应的重要调节因子之一被发现. LexA蛋白含有202个氨基酸,由N端DNA结合结构域和C端催化核心结构域构成. 细胞中LexA蛋白大都以二聚体形式存在,并且有可切割和不可切割两种构象. 在正常生理条件下,LexA特异性结合16 bp的保守序列5′-CTGTN8ACAG-3′,即SOS盒,抑制约50个基因的表达. 当发生DNA损伤时,活化的RecA蛋白通过稳定LexA蛋白可切割构象,促进LexA蛋白Ala84-Gly85间肽键的切割,产生的C端LexA85 202和N端LexA1 84被蛋白酶ClpXP和Lon快速降解. LexA蛋白切割后,SOS基因以一定的顺序开始表达,并且完成DNA损伤修复. 本文回顾和总结了LexA蛋白分子结构,自我切割分子机制和影响因素,以及在SOS反应中的作用等方面的研究进展. 同时,也讨论了LexA蛋白在原核细胞中的进化保守性.  相似文献   

15.
16.
17.
18.
The SOS response to DNA damage in Escherichia coli involves at least 43 genes, all under the control of the LexA repressor. Activation of these genes occurs when the LexA repressor cleaves itself, a reaction catalyzed by an active, extended RecA filament formed on DNA. It has been shown that the LexA repressor binds within the deep groove of this nucleoprotein filament, and presumably, cleavage occurs in this groove. Bacteriophages, such as λ, have repressors (cI) that are structural homologs of LexA and also undergo self-cleavage when SOS is induced. It has been puzzling that some mutations in RecA that affect the cleavage of repressors are in the C-terminal domain (CTD) far from the groove where cleavage is thought to occur. In addition, it has been shown that the rate of cleavage of cI by RecA is dependent upon both the substrate on which RecA is polymerized and the ATP analog used. Electron microscopy and three-dimensional reconstructions show that the conformation and dynamics of RecA's CTD are also modulated by the polynucleotide substrate and ATP analog. Under conditions where the repressor cleavage rates are the highest, cI is coordinated within the groove by contacts with RecA's CTD. These observations provide a framework for understanding previous genetic and biochemical observations.  相似文献   

19.
20.
Phenotypic diversity provides populations of prokaryotic and eukaryotic organisms with the flexibility required to adapt to and/or survive environmental perturbations. Consequently, there is much interest in unraveling the molecular mechanisms of heterogeneity. A classical example of heterogeneity in Escherichia coli is the subset (3%) of the population that expresses the colicin K activity gene (cka) upon nutrient starvation. Here, we report on the mechanism underlying this variable response. As colicin synthesis is regulated by the LexA protein, the central regulator of the SOS response, we focused on the role of LexA and the SOS system in the variable cka expression. Real-time RT-PCR showed that the SOS system, without exogenous DNA damage, induces moderate levels of cka expression. The use of cka-gfp fusions demonstrated that modification of the conserved LexA boxes in the cka promoter region affected LexA binding affinity and the percentage of cka-gfp expressing cells in the population. A lexA-gfp fusion showed that the lexA gene is highly expressed in a subset of bacteria. Furthermore, cka-gfp fusions cloned into higher copy plasmid vectors increased the percentage of cka-gfp positive bacteria. Together, these results indicate that the bistability in cka expression in the bacterial population is determined by (1) basal SOS activity, (2) stochastic factors and possibly (3) the interplay of LexA dimers at cka operator. Other LexA regulated processes could exhibit similar regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号