首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Chondroitin sulfate proteoglycans (CSPGs) are extracellular inhibitors of axon extension and plasticity, and cause growth cones to exhibit dystrophic behaviors. Phosphoinositide 3‐kinase (PI3K) is a lipid kinase activated by axon growth promoting signals. In this study, we used embryonic chicken dorsal root ganglion neurons to determine if CSPGs impair signaling through PI3K. We report that CSPGs inhibit PI3K signaling in axons and growth cones, as evidenced by decreased levels of phosphorylated downstream kinases (Akt and S6). Direct activation of PI3K signaling, using a cell permeable phosphopeptide (PI3Kpep), countered the effects of CSPGs on growth cones and axon extension. Both overnight and acute treatment with PI3Kpep promoted axon extension on CSPG‐coated substrates. The R‐Ras GTPase is an upstream positive regulator of PI3K signaling. Expression of constitutively active R‐Ras promoted axon extension and growth cone elaboration on CSPGs and permissive substrata. In contrast, an N‐terminus‐deleted constitutively active R‐Ras, deficient in PI3K activation, promoted axon extension but not growth cone elaboration on CSPGs and permissive substrata. These data indicate that activation of R‐Ras‐PI3K signaling may be a viable approach for manipulating axon extension on CSPGs. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 918–933, 2014  相似文献   

4.
One of the fundamental mysteries of the human visual system is the continuous function of cone photoreceptors in bright daylight. As visual pigment is destroyed, or bleached, by light [1], cones require its rapid regeneration, which in turn involves rapid recycling of the pigment's chromophore. The canonical visual cycle for rod and cone pigments involves recycling of their chromophore from all-trans retinol to 11-cis retinal in the pigment epithelium, adjacent to photoreceptors [2]. However, shortcomings of this pathway indicate the function of a second, cone-specific, mechanism for chromophore recycling [3]. Indeed, biochemical [3], [4], [5], [6] and [7] and physiological [8] studies on lower species have described a cone-specific visual cycle in addition to the long-known pigment epithelium pathway. Two important questions remain, however: what is the role of this pathway in the function of mammalian cones, and is it present in higher mammals, including humans? Here, we show that mouse, primate, and human neural retinas promote pigment regeneration and dark adaptation selectively in cones, but not in rods. This pathway supports rapid dark adaptation of mammalian cones and extends their dynamic range in background light independently of the pigment epithelium. This pigment-regeneration mechanism is essential for our daytime vision and appears to be evolutionarily conserved.  相似文献   

5.
We sought to characterize the regenerated cells, if any, when photoreceptor ablation was mostly limited to a particular cone subtype. This allowed us to uniquely assess whether the remaining cells influence specification of regenerating photoreceptors. The ability to replace lost photoreceptors via stem cell therapy holds promise for treating many retinal degenerative diseases. Zebrafish are potent for modelling this because they have robust regenerative capacity emanating from endogenous stem cells, and abundant cone photoreceptors including multiple spectral subtypes similar to human fovea. We ablated the homolog of the human S-cones, the ultraviolet-sensitive (UV) cones, and tested the hypothesis that the photoreceptors regenerating in their place take on identities matching those expected from normal cone mosaic development. We created transgenic fish wherein UV cones can be ablated by addition of a prodrug. Thus photoreceptors developed normally and only the UV cones expressed nitroreductase; the latter converts the prodrug metronidazole to a cell-autonomous neurotoxin. A significant increase in proliferation of progenitor cell populations (p<0.01) was observed when cell ablation was primarily limited to UV cones. In control fish, we found that BrdU primarily incorporated into rod photoreceptors, as expected. However the majority of regenerating photoreceptors became cones when retinal cell ablation was predominantly restricted to UV cones: a 2-fold increase in the relative abundance of cones (p = 0.008) was mirrored by a 35% decrease in rods. By primarily ablating only a single photoreceptor type, we show that the subsequent regeneration is biased towards restoring the cognate photoreceptor type. We discuss the hypothesis that, after cone death, the microenvironment formed by the remaining retinal cells may be influential in determining the identity of regenerating photoreceptors, though other interpretations are plausible. Our novel animal model provides control of ablation that will assist in identifying mechanisms required to replace cone photoreceptors clinically to restore daytime vision.  相似文献   

6.
Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders.  相似文献   

7.
Chen PL  Clandinin TR 《Neuron》2008,58(1):26-33
Quantitative differences in cadherin activity have been proposed to play important roles in patterning connections between pre- and postsynaptic neurons. However, no examples of such a function have yet been described, and the mechanisms that would allow such differences to direct growth cones to specific synaptic targets are unknown. In the Drosophila visual system, photoreceptors are genetically programmed to make a complex, stereotypic set of synaptic connections. Here we show that the atypical cadherin Flamingo functions as a short-range, homophilic signal, passing between specific R cell growth cones to influence their choice of postsynaptic partners. We find that individual growth cones are sensitive to differences in Flamingo activity through opposing interactions between neighboring cells and require these interactions to be balanced in order to extend along the appropriate trajectory.  相似文献   

8.
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called “Y-Junctions”, form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.  相似文献   

9.
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).  相似文献   

10.
Neuronal differentiation in Drosophila ommatidium   总被引:19,自引:0,他引:19  
Using monoclonal and polyclonal antibodies as differentiation markers, we have found that the eight photoreceptors of the Drosophila ommatidium differentiate in a fixed sequence. The foundation photoreceptor, R8, expresses neural antigens first. The paired photoreceptors R2/5 are next to express, followed by the pair R3/4, followed by the pair R1/6; R7 is the final photoreceptor to differentiate. From previous studies it is known that Drosophila photoreceptors use local, positional cues to select their identities. Together with the morphological picture of ommatidial development, the sequential order of photoreceptor differentiation demonstrated here suggests that these cues may be encoded in the particular combination of cells an undetermined cell finds itself in contact with.  相似文献   

11.
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1–R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs'' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information.  相似文献   

12.
Using monoclonal and polyclonal antibodies as differentiation markers, we have found that the eight photoreceptors of the Drosophila ommatidium differentiate in a fixed sequence. The foundation photoreceptor, R8, expresses neural antigens first. The paired photoreceptors R2/5 are next to express, followed by the pair R3/4, followed by the pair R1/6; R7 is the final photoreceptor to differentiate. From previous studies it is known that Drosophila photoreceptors use local, positional cues to select their identities. Together with the morphological picture of ommatidial development, the sequential order of photoreceptor differentiation demonstrated here suggests that these cues may be encoded in the particular combination of cells an undetermined cell finds itself in contact with.  相似文献   

13.
14.
The complex process of axon guidance is largely driven by the growth cone, which is the dynamic motile structure at the tip of the growing axon. During axon outgrowth, the growth cone must integrate multiple sources of guidance cue information to modulate its cytoskeleton in order to propel the growth cone forward and accurately navigate to find its specific targets1. How this integration occurs at the cytoskeletal level is still emerging, and examination of cytoskeletal protein and effector dynamics within the growth cone can allow the elucidation of these mechanisms. Xenopus laevis growth cones are large enough (10-30 microns in diameter) to perform high-resolution live imaging of cytoskeletal dynamics (e.g.2-4 ) and are easy to isolate and manipulate in a lab setting compared to other vertebrates. The frog is a classic model system for developmental neurobiology studies, and important early insights into growth cone microtubule dynamics were initially found using this system5-7 . In this method8, eggs are collected and fertilized in vitro, injected with RNA encoding fluorescently tagged cytoskeletal fusion proteins or other constructs to manipulate gene expression, and then allowed to develop to the neural tube stage. Neural tubes are isolated by dissection and then are cultured, and growth cones on outgrowing neurites are imaged. In this article, we describe how to perform this method, the goal of which is to culture Xenopus laevis growth cones for subsequent high-resolution image analysis. While we provide the example of +TIP fusion protein EB1-GFP, this method can be applied to any number of proteins to elucidate their behaviors within the growth cone.  相似文献   

15.
The most common hereditary retinal degeneration, retinitis pigmentosa (RP), leads to blindness by degeneration of cone photoreceptors. Meanwhile, genetic studies have shown that a significant proportion of RP genes is expressed only by rods, which raises the question of the mechanism leading to the degeneration of cones. Following the concept of sustainability factor cones, rods secrete survival factors that are necessary to maintain the cones, named Rod-derived Cone Viability Factors (RdCVFs). In patients suffering from RP, loss of rods results in the loss of RdCVFs expression and followed by cone degeneration. We have identified the bifunctional genes nucleoredoxin-like 1 and 2 that encode for, by differential splicing, a thioredoxin enzyme and a cone survival factor, respectively RdCVF and RdCVF2. The administration of these survival factors would maintain cones and central vision in most patients suffering from RP.  相似文献   

16.
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.  相似文献   

17.
Cone photoreceptors show lower light sensitivity and briefer light responses than rod photoreceptors. The light detection signal in these cells is amplified through a phototransduction cascade. The first step of amplification in the cascade is the activation of a GTP-binding protein, transducin (Tr), by light-activated visual pigment (R*). We quantified transducin activation by measuring the binding of GTPγS in purified carp rod and cone membrane preparations with the use of a rapid quench apparatus and found that transducin activation by an R* molecule is ∼5 times less efficient in cones than in rods. Transducin activation terminated in less than 1 s in cones, more quickly than in rods. The rate of GTP hydrolysis in Tr*, and thus the rate of Tr* inactivation, was ∼25 times higher in cones than in rods. This faster inactivation of Tr* ensures briefer light responses in cones. The expression level of RGS9 was found to be ∼20 times higher in cones than in rods, which explains higher GTP hydrolytic activity and, thus, faster Tr* inactivation in cones than in rods. Although carp rods and cones express rod- or cone-versions of visual pigment and transducin, these molecules themselves do not seem to induce the differences significantly in the transducin activation and Tr* inactivation in rods and cones. Instead, the differences seem to be brought about in a rod or cone cell-type specific manner.  相似文献   

18.
Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics   总被引:4,自引:0,他引:4  
During development of the adult Drosophila visual system, axons of the eight photoreceptors in each ommatidium fasciculate together and project as a single bundle towards the optic lobes of the brain. Within the brain, individual photoreceptor axons from each bundle then seek specific targets in distinct layers of the optic lobes. The axons of photoreceptors R1-R6 terminate in the lamina, while R7 and R8 axons pass through the lamina to terminate in separate layers of the medulla. To identify genes required for photoreceptor axon guidance, including those with essential functions during early development, we have devised a strategy for the simple and efficient generation of genetic mosaics in which mutant photoreceptor axons innervate a predominantly wild-type brain. In a large-scale saturation mutagenesis performed using this system, we recovered new alleles of the gene encoding the receptor tyrosine phosphatase PTP69D. PTP69D has previously been shown to function in the correct targeting of motor axons in the embryo and R1-R6 axons in the visual system. Here, we show that PTP69D is also required for correct targeting of R7 axons. Whereas mutant R1-R6 axons occasionally extend beyond their normal targets in the lamina, mutant R7 axons often fail to reach their targets in the medulla, stopping instead at the same level as the R8 axon. These targeting errors are difficult to reconcile with models in which PTP69D plays an instructive role in photoreceptor axon targeting, as previously proposed. Rather, we suggest that PTP69D plays a permissive role, perhaps reducing the adhesion of R1-R6 and R7 growth cones to the pioneer R8 axon so that they can respond independently to their specific targeting cues.  相似文献   

19.
There are two distinct classes of image-forming photoreceptors in the vertebrate retina: rods and cones. Rods are able to detect single photons of light whereas cones operate continuously under rapidly changing bright light conditions. Absorption of light by rod- and cone-specific visual pigments in the outer segments of photoreceptors triggers a phototransduction cascade that eventually leads to closure of cyclic nucleotide-gated channels on the plasma membrane and cell hyperpolarization. This light-induced change in membrane current and potential can be registered as a photoresponse, by either classical suction electrode recording technique1,2 or by transretinal electroretinogram recordings (ERG) from isolated retinas with pharmacologically blocked postsynaptic response components3-5. The latter method allows drug-accessible long-lasting recordings from mouse photoreceptors and is particularly useful for obtaining stable photoresponses from the scarce and fragile mouse cones. In the case of cones, such experiments can be performed both in dark-adapted conditions and following intense illumination that bleaches essentially all visual pigment, to monitor the process of cone photosensitivity recovery during dark adaptation6,7. In this video, we will show how to perform rod- and M/L-cone-driven transretinal recordings from dark-adapted mouse retina. Rod recordings will be carried out using retina of wild type (C57Bl/6) mice. For simplicity, cone recordings will be obtained from genetically modified rod transducin α-subunit knockout (-/-) mice which lack rod signaling8.  相似文献   

20.

Background

Transplantation as a therapeutic strategy for inherited retinal degeneration has been historically viewed to restore vision as a method by replacing the lost retinal cells and attempting to reconstruct the neural circuitry with stem cells, progenitor cells and mature neural retinal cells.

Methods and Findings

We present evidence for an alternative strategy aimed at preventing the secondary loss of cones, the most crucial photoreceptors for vision, by transplanting normal photoreceptors cells into the eye of the P23H rat, a model of dominant retinitis pigmentosa. We carried out transplantation of photoreceptors or total neural retina in 3-month-old P23H rats and evaluated the function and cell counts 6 months after surgery. In both groups, cone loss was significantly reduced (10%) in the transplanted eyes where the cone outer segments were found to be considerably longer. This morphological effect correlated with maintenance of the visual function of cones as scored by photopic ERG recording, but more precisely with an increase in the photopic b-wave amplitudes by 100% and 78% for photoreceptor transplantation and whole retinal transplantation respectively.

Conclusions

We demonstrate here that the transplanted tissue prevents the loss of cone function, which is further translated into cone survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号