首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the effects of within-patch scale structure of seagrass habitats on predator–prey fish interactions and abundance/habitat use patterns were reviewed. Most laboratory experiments have employed chase-and-attack predators, usually resulting in lower foraging efficiency in (denser) seagrass. However, a few laboratory procedures employed alternative foraging tactics, resulting in no differences in prey mortality rates. Field studies did not always result in lower prey mortality rates in seagrass habitats. Accordingly, it is premature to conclude that seagrass presence is almost always negatively related to predator foraging efficiency or that increasing seagrass abundance is usually associated with a decrease in predator efficiency. Because several categories of predator and prey fishes occur in seagrass habitats, further studies are needed with all of these predator–prey combinations, in order to fully clarify predator–prey fish interactions in association with seagrass structure. Seagrass fishes have been shown to respond to alterations in seagrass structure in various ways: seagrass height and/or density reduction or clearance resulted in decreased abundance of some species but increases or no change in others. Some explanations have been proposed, not all mutually exclusive, for these phenomena. Although within-patch scale processes have been well studied, room exists for improvement. For example, predator–prey fish interactions in relation to varying within-patch scale complexity is not yet fully understand. The relationships of patch size, edge effects and within-patch scale complexity also still remain unclear. Further studies, which add to the clarification of within-patch scale process, will in turn improve our understanding of larger spatial scale processes.  相似文献   

2.
A field experiment was carried out to determine whether group-foragingstarlings (Sturnus vulgaris) use public information to helpthem estimate the quality of an artificial resource patch anddepart accordingly. Three kinds of information are potentiallyavailable in a group: patch-sample information, pre-harvestinformation, and public information. These three types of informationcan be combined into four patch assessment strategies: (1) patch-samplealone; (2) patch-sample and pre-harvest; (3) patch-sample andpublic; and (4) patch-sample, pre-harvest, and public. Dependingon the foraging environment we presented to the starlings, eachassessment strategy made a unique set of predictions concerningthe patch departure decisions of pairs of birds based on differencesin their foraging success. The environment was manipulated intwo ways: by altering the variability in patch quality and bychanging compatibility, the ease with which individual birdscould simultaneously acquire both patch-sample and public information.Our observations on patch persistence and departure order demonstratethat the starlings used a combination of patch-sample and publicinformation, but not pre-harvest information, to estimate thequality of the experimental patch. Moreover, our results suggestthat starlings use public information only when it is easilyavailable and ignore it under incompatible conditions. Thisstudy provides the first evidence of public information usein a patch assessment problem.  相似文献   

3.
Extrapolation of predator functional responses from laboratory observations to the field is often necessary to predict predation rates and predator-prey dynamics at spatial and temporal scales that are difficult to observe directly. We use a spatially explicit individual-based model to explore mechanisms behind changes in functional responses when the scale of observation is increased. Model parameters were estimated from a predator-prey system consisting of the predator Delphastus catalinae (Coleoptera: Coccinellidae) and Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) on tomato plants. The model explicitly incorporates prey and predator distributions within single plants, the search behavior of predators within plants, and the functional response to prey at the smallest scale of interaction (within leaflets) observed in the laboratory. Validation revealed that the model is useful in scaling up from laboratory observations to predation in whole tomato plants of varying sizes. Comparing predicted predation at the leaflet scale, as observed in laboratory experiments, with predicted predation on whole plants revealed that the predator functional response switches from type II within leaflets to type III within whole plants. We found that the magnitude of predation rates and the type of functional response at the whole plant scale are modulated by (1) the degree of alignment between predator and prey distributions and (2) predator foraging behavior, particularly the effect of area-concentrated search within plants when prey population density is relatively low. The experimental and modeling techniques we present could be applied to other systems in which active predators prey upon sessile or slow-moving species.  相似文献   

4.
Alan E. Burger 《Oecologia》1982,52(2):236-245
Summary During winter (May through October) many Lesser Sheathbills Chionis minor at Marion Island in the sub-Antarctic were obliged to leave their preferred foraging habitat in penguin colonies to forage for invertebrates on the island's coastal plain. The study describes factors affecting feeding success, time budgets and predation risk of the sheathbills which exploited these small, patchily dispersed prey. The birds appeared to select prey 1 mm in diameter, and ignore smaller, common invertebrates.Sheathbills were highly selective of foraging habitat. During 17 censuses made through the winter, 97% of the 1,504 birdsightings were at only eight of the 19 available vegetation types. Multiple regression analysis revealed that prey density was the most important criterion in habitat preference, followed by plant canopy height and distance of the habitat from the sea. These variables accounted for 78% of the variance of habitat use. Focal-animal observations in a sample of habitats showed that feeding success was correlated with prey density and distance from the sea. Tall vegetation impeded the locomotion and foraging of sheathbills. The sheathbills reduced predation risk from skuas Catharacta lonnbergi and travelling time by foraging near the shore. The spatial distribution of prey within vegetation types was apparently unimportant in habitat selection.During winter 83% of the sheathbills in the study foraged communally and 98% roosted communally. Flocks occurred only on good quality habitat and flocking probably facilitated habitat selection. Feeding success increased initially with increasing flock size but decreased in flocks greater than 15 birds, which was attributed to localized prey deletions. The sheathbills spent 88% of the daytime foraging; and feeding, looking around and walking comprised 99% of foraging time. Feeding time increased with increasing flock size, looking around decreased but walking was unaffected. Aggression was rare, was unaffected by flock size and did not significantly affect feeding. A probability model showed that sheathbills could greatly reduce predation risk by flocking but the benefits would not improve much in flocks greater than eight birds.The habitat selection, time budgets and feeding success of adults, subadults and juveniles were very similar.The exploitation of terrestrial invertebrates by sheathbills was interpreted as an expansion of the population's trophic niche to tap an underexploited resource on a species-poor island.  相似文献   

5.
Identifying the primary foraging grounds of abundant top predators is of importance in marine management to identify areas of high biological significance, and to assess the extent of competition with fisheries. We studied the search effort and habitat selection of the highly abundant short‐tailed shearwater Puffinus tenuirostris to assess the search strategies employed by this wide‐ranging seabird. During the chick‐rearing period 52 individuals were tracked performing 39 short foraging trips (1–2 days), and 13 long trips (11–32 days). First‐passage time analysis revealed that 46% of birds performing short trips employed area‐restricted searches, concentrating search effort at an average scale of 14 ± 5 km. Foraging searches were more continuous for the other 54%, who travelled faster to cover greater distances, with little evidence of area‐restricted searches. The prey returned indicated that continuous searchers consumed similar prey mass, but greater prey diversity than area‐restricted search birds. On long trips 23% of birds travelled 500–1000 km to neritic (continental shelf) habitats, showing weak evidence of preference for areas of higher chlorophyll a concentration, and foraged at a similar spatial scale to short trips. The other 76% performed rapid outbound flights of 1000–3600 km across oceanic habitats commuting to regions with higher chlorophyll a. The spatial scale of search effort in oceanic habitat varied widely with some performing broad‐scale searches (260–560 km) followed by finer‐scale nested searches (16–170 km). This study demonstrates that a range of search strategies are employed when exploiting prey across ocean basins. The trade‐offs between different search strategies are discussed to identify the value of these contrasting behaviours to wide‐ranging seabirds.  相似文献   

6.
Foraging strategies of birds can influence trophic plant–insect networks with impacts on primary plant production. Recent experiments show that some forest insectivorous birds can use herbivore‐induced plant volatiles (HIPVs) to locate herbivore‐infested trees, but it is unclear how birds combine or prioritize visual and olfactory information when making foraging decisions. Here, we investigated attraction of ground‐foraging birds to HIPVs and visible prey in short vegetation on farmland in a series of foraging choice experiments. Birds showed an initial preference for HIPVs when visual information was the same for all choice options (i.e., one experimental setup had all options with visible prey, another setup with hidden prey). However, if the alternatives within an experimental setup included visible prey (without HIPV) in competition with HIPV‐only, then birds preferred the visual option over HIPVs. Our results show that olfactory cues can play an important role in birds’ foraging choices when visual information contains little variation; however, visual cues are preferred when variation is present. This suggests certain aspects of bird foraging decisions in agricultural habitats are mediated by olfactory interaction mechanisms between birds and plants. We also found that birds from variety of dietary food guilds were attracted to HIPVs; hence, the ability of birds to use plant cues is probably more general than previously thought, and may influence the biological pest control potential of birds on farmland.  相似文献   

7.
Movements and foraging strategies of marine predators should cope with the hierarchical spatial distribution of resources. Therefore, in order to predict the at‐sea distribution of aerial predators, it is crucial to understand the factors governing trajectory decisions at different scales. Using first passage time (FPT) analysis on precision tracking information (GPS‐loggers data) we were able to examine the foraging strategy of Cory's shearwaters Calonectris diomedea and to detect the adoption of area‐restricted search (ARS), measuring the scale and duration of this behaviour. Data were collected from three different populations foraging in different oceanographic conditions. During long excursions birds only commuted between their colony and prey patches, while on their short movements birds increased the amount of looping movements. On short trips, birds addopted ARS behaviour at an average scale of 18 km and at a second nested scale of around 2 km. When engaging in long trips, first scale of ARS occurred on average at about 67 km of radii and than a second nested scale at a radii of 24 km. Overall, the different populations showed foraging patterns matching the habitats exploited: a) at smaller scales of ARS, sea‐surface temperature, chlorophyll‐a concentration and depth influenced the time of residence (i.e. FPT) of birds (with variations at a population level); b) at larger scales of ARS, FPT increased within regions of higher gradients of sea‐surface temperature, chlorophyl‐a concentration and depth. This study demonstrates that Cory's shearwaters adopt scale‐dependent adjustments of movement in relation to the hierarchical distribution of the environment they exploit, matching the scale and duration of ARS with the hierarchical distribution of the environmental features.  相似文献   

8.
1. Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. 2. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. 3. Within mouse- and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). 4. Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). 5. These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.  相似文献   

9.
It has been suggested that birds prefer to use a particular eye while learning to detect cryptic prey and that this eye preference enhances foraging performance. European starlings (Sturnus vulgaris) with the left, right, or both eyes available learned to detect inconspicuous cues associated with the presence of hidden prey. Acquisition scores were not significantly different between left and right-eyed birds; however, performance in the binocular condition was significantly higher than in the two monocular conditions. When binocular birds were tested with familiar and unfamiliar cues present simultaneously, the familiar cue was selected significantly more often than the unfamiliar cue, suggesting that the birds were searching for specific cue features. When monocular birds were tested using only the naïve eye, performance dropped significantly. In right-eyed birds using the naïve left eye, performance remained at chance levels over transfer trials. However, left-eyed birds using the naïve right eye had a superior performance compared to the initial acquisition scores of right-eyed birds and also showed a significant improvement in performance over transfer trials. Thus, although there was no direct evidence of lateralization during acquisition, there was unilateral transfer of the prey detection skill from the right to the left hemisphere.  相似文献   

10.
Predictable sources of food underpin lifetime reproductive output in long lived animals. The most important foraging areas of top marine predators are therefore likely to be related to environmental features that enhance productivity in predictable spatial and temporal patterns. Even so, although productive areas within the marine environment are distributed patchily in space and time, most studies assess the relationships between feeding activity and proximate, not long term, environmental characteristics. In addition, individuals within a population may exploit different prey types, and these are often associated with different hydrographic features. Until now, models attempting to associate core foraging areas (CFAs) of marine predators with the environmental characteristics of those areas have not considered the diet of individual animals, despite the influence this could have on these relationships. We used bathymetry and multi‐year (n=24) mean sea surface temperature and variability as predictors of CFAs of lactating Antarctic fur seals Arctocephalus gazella at Heard Island. The effect of prey types on the predictability of these models was explored by matching diet and foraging trip data of individual seals (n=40 seals, n=1 trip each). Differences in diet between seals were mirrored by their spatial behaviour. Foraging strategies differed both between and within groups of seals consuming different diets. Long‐term environmental parameters were useful for predicting the foraging activity of seals that consumed a single prey type with relatively specific habitat preferences, but not for those that consumed single or multiple prey types associated with more varied habitats. Ignoring individual variation in predator diet probably contributes to the poor performance of foraging habitat models. These findings highlight the importance of incorporating individual specialization in foraging behaviour into ecological models and management of predator populations.  相似文献   

11.
Social cohesion and prey location in seabirds are largely enabled through visual and olfactory signals, but these behavioural aspects could potentially also be enhanced through acoustic transfer of information. Should this be the case, calling behaviour could be influenced by different social–ecological stimuli. African Penguins Spheniscus demersus were equipped with animal-borne video recorders to determine whether the frequency and types of calls emitted at sea were dependent on behavioural modes (commuting, sedentary and dive bout) and social status (solitary vs. group). For foraging dive bouts we assessed whether the timing and frequency of calls were significantly different in the presence of schooling prey vs. single fish. The probability of call events was significantly more likely for birds commuting early and late in the day (for solitary birds) and during dive bouts (for groups). During foraging dive bouts the frequency of calls was significantly greater for birds diving in the presence of schooling fish and birds called sooner after a catch in these foraging scenarios compared with when only single fish were encountered. Three call types were recorded, 'flat', 'modulated' and 'two-voice' calls, but there was no significant relationship detected with these call types and behavioural modes for solitary birds and birds in groups. The results of this study show that acoustic signalling by African Penguins at sea is used in a variety of behavioural contexts and that increased calling activity in the presence of more profitable prey could be of crucial importance to seabirds that benefit from group foraging.  相似文献   

12.
In a patchy environment, predators are expected to increase turning rate and start an area-restricted search (ARS) when prey have been encountered, but few empirical data exist for large predators. By using GPS loggers with devices measuring prey capture, we studied how a marine predator adjusts foraging movements at various scales in relation to prey capture. Wandering albatrosses use two tactics, sit and wait and foraging in flight, the former tactic being three times less efficient than the latter. During flight foraging, birds caught large isolated prey and used ARS at scales varying from 5 to 90 km, with large-scale ARS being used only by young animals. Birds did not show strong responses to prey capture at a large scale, few ARS events occurred after prey capture, and birds did not have high rates of prey capture in ARS. Only at small scales did birds increase sinuosity after prey captures for a limited time period, and this occurred only after they had caught a large prey item within an ARS zone. When this species searches over a large scale, the most effective search rule was to follow a nearly straight path. ARS may be used to restrict search to a particular environment where prey capture is more predictable and profitable.  相似文献   

13.
The nature of prey selection by two centrarchids (white crappie and bluegill) is presented as a model incorporating optimal foraging strategies. The visual field of the foraging fish as represented by the reactive distance is analysed in detail to estimate the number of prey encounters per search bout. The predicted reactive distances are compared with experimental data. The energetic cost associated with fish foraging behaviour is calculated based on the sequence of events that takes place for each prey consumed. Comparisons of the relative abundance of prey species and size categories in the stomach to the lake environment indicated that both white crappie and bluegill (length < 100 mm) strongly select prey utilising an energy optimization strategy. In most cases, the fish exclusively selected large Daphnia ignoring evasive prey types (Cyclops, Diaptomids) and small cladocera. This selectivity is the result of fish actively avoiding prey with high evasion capabilities even though they appear to be high in energetic content and having translated this into optimal selectivity through capture success rates. The energy consideration and visual system, apart from the forager's ability to capture prey, are the major determinants of prey selectivity for large-sized bluegill and white crappie still at planktivorous stages.  相似文献   

14.
15.
During the annual cycle, migratory waders may face strikingly different feeding conditions as they move between breeding areas and wintering grounds. Thus, it is of crucial importance that they rapidly adjust their behaviour and diet to benefit from peaks of prey abundance, in particular during migration, when they need to accumulate energy at a fast pace. In this study, we compared foraging behaviour and diet of wintering and northward migrating dunlins in the Tagus estuary, Portugal, by video-recording foraging birds and analysing their droppings. We also estimated energy intake rates and analysed variations in prey availability, including those that were active at the sediment surface. Wintering and northward migrating dunlins showed clearly different foraging behaviour and diet. In winter, birds predominantly adopted a tactile foraging technique (probing), mainly used to search for small buried bivalves, with some visual surface pecking to collect gastropods and crop bivalve siphons. Contrastingly, in spring dunlins generally used a visual foraging strategy, mostly to consume worms, but also bivalve siphons and shrimps. From winter to spring, we found a marked increase both in the biomass of invertebrate prey in the sediment and in the surface activity of worms and siphons. The combination of these two factors, together with the availability of shrimps in spring, most likely explains the changes in the diet and foraging behaviour of dunlins. Northward migrating birds took advantage from the improved feeding conditions in spring, achieving 65% higher energy intake rates as compared with wintering birds. Building on these results and on known daily activity budgets for this species, our results suggest that Tagus estuary provides high-quality feeding conditions for birds during their stopovers, enabling high fattening rates. These findings show that this large wetland plays a key role as a stopover site for migratory waders within the East Atlantic Flyway.  相似文献   

16.
Avian predators readily learn to associate the warning coloration of aposematic prey with the toxic effects of ingesting them, but they do not necessarily exclude aposematic prey from their diets. By eating aposematic prey ‘educated’ predators are thought to be trading-off the benefits of gaining nutrients with the costs of eating toxins. However, while we know that the toxin content of aposematic prey affects the foraging decisions made by avian predators, the extent to which the nutritional content of toxic prey affects predators'' decisions to eat them remains to be tested. Here, we show that European starlings (Sturnus vulgaris) increase their intake of a toxic prey type when the nutritional content is artificially increased, and decrease their intake when nutritional enrichment is ceased. This clearly demonstrates that birds can detect the nutritional content of toxic prey by post-ingestive feedback, and use this information in their foraging decisions, raising new perspectives on the evolution of prey defences. Nutritional differences between individuals could result in equally toxic prey being unequally predated, and might explain why some species undergo ontogenetic shifts in defence strategies. Furthermore, the nutritional value of prey will likely have a significant impact on the evolutionary dynamics of mimicry systems.  相似文献   

17.
Starling foraging success in relation to agricultural land-use   总被引:2,自引:0,他引:2  
Changes in agricultural land-use have been suggested to contribute to the decline of several bird species through negative effects on their food supply during breeding. One important change in land-use has been loss of pastures, especially permanent pastures. In this study we investigated how different forms of agricultural land-use affected foraging success of a declining bird species, the European starling Sturnus vulgaris . We let caged starlings forage in different forms of agricultural fields and determined time spent foraging and foraging success. The starlings' activity level (time spent actively foraging) as well as the number of prey caught per time unit was strongly related to the abundance of prey in soil samples. Also the body mass change during the experiment was positively related to activity level and prey capture rate. We found consistent differences in foraging variables between habitats. In spring sown grain starlings were least active and found fewer prey items at a lower rate than in any other habitat. The other three habitats differed less, but in general mowed hay fields appeared slightly more valuable than the cultivated and natural pastures. We did not find any differences between natural and cultivated pastures in foraging variables. Thus, starling foraging success is higher in grass-covered fields than in cultivated fields, but the management of the grass-covered fields mattered less. The results are consistent with starlings having higher population densities and breeding success in areas with higher availability of pasture. We suggest that the physical structure of the habitat (sward height) and moisture may be additional variables that need to be taken into account to explain starling breeding density and success in the agricultural landscape.  相似文献   

18.
The effects of prey density and spatial distribution on prey consumption of the adult predatory ladybird, Harmonia axyridis , were investigated by using a 2 × 2 factorial design in large scale cages. Prey density influenced prey consumption of the ladybirds, and the frequency with which predation occurred was quite different between the prey distributions. The ladybirds consumed a relatively constant and small number of aphids when the prey were uniformly distributed, whereas the number of prey consumed per day when predation occurred was large and much more variable when the prey were contagiously distributed. At high prey density, the number of prey consumed was highest during the first day of the experiment; thereafter, only 10–20 aphids were consumed during the following 3 days. However, these patterns of prey consumption were not observed at low prey density. The percentage of aphids that remained on the host plants when the experiments were terminated was higher at low prey density than at high prey density, suggesting that predator foraging efficiency at low prey density was lower than at high prey density. Ladybirds foraging for high prey density were more frequently observed on the plants with aphids than ladybirds foraging for low prey density. Prey distribution also influenced the frequency of residence of ladybirds on the plants. The different predation patterns observed in the two spatial distributions, in which prey consumption was much more variable for the contagious distribution, might be explained by the difference in prey encounter rate of the predator between the distributions. This study indicated that the ladybirds had limited ability to search out prey over large spatial scales.  相似文献   

19.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

20.
Although habitat selection has been studied in a variety of snake taxa, little is known about habitat selection in aquatic snake species. Additionally, due to their small size and secretive nature, juvenile snakes are seldom included in habitat selection studies. The Eastern cottonmouth Agkistrodon piscivorus is a semi-aquatic pit viper known to use ambush, sit-and-wait foraging strategies. Ambush hunters are likely to select habitats that increase opportunity for successful prey capture while minimizing predation risk and maintaining appropriate thermal and hydric conditions. We characterized the foraging strategy and microhabitat use of cottonmouths at Ellenton Bay, an isolated Carolina bay freshwater wetland on the Savannah River Site in SC, USA. We measured habitat characteristics of 55 ambush sites used by 51 individual cottonmouths located during nighttime visual surveys, as well as 225 randomly selected sites within our search area. Cottonmouths exhibited an ontogenetic shift in foraging strategy with juveniles using predominately ambush foraging around the edge of the wetland while adults were most often encountered actively moving within the wetland. Principal components analysis revealed that juveniles selected foraging microhabitats that were different from random and consisted of mud substrate with sparse vegetation, whereas adults occupied a greater variety of microhabitats that did not differ from random. Concomitantly, free-ranging cottonmouths exhibited ontogenetic shifts in diet: juveniles consumed mostly salamanders, while adults ate a greater variety of prey including other snakes and birds. Our results highlight the importance of understanding how ontogenetic changes in coloration, diet and predation risk influence foraging strategy and microhabitat selection in snakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号