首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of ALDP (ABCD1) and mitochondria in X-linked adrenoleukodystrophy   总被引:12,自引:0,他引:12       下载免费PDF全文
Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C(>22:0)) that have been attributed to reduced peroxisomal VLCFA beta-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA beta-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA beta-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA beta-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA beta-oxidation and that VLCFA levels are not determined by the rate of VLCFA beta-oxidation. The rate of peroxisomal VLCFA beta-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid beta-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA beta-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice.  相似文献   

2.
1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids.  相似文献   

3.
The in vivo oxidation of perfused [14C]-labeled fatty acids has been shown to decrease dramatically in hypoxic hearts. This study addresses the influence of ischemia and reperfusion on the enzymic activities of beta-oxidation of fatty acids in mitochondria and of peroxisomal origin. The rate of beta-oxidation of fatty acids in the isolated mitochondria from myocardium of swine fed control diet declined about 20% by the ischemic insult induced by hypothermic cardioplegic arrest. Upon reperfusion, the rate of mitochondrial beta-oxidation returned to a normal level. In clofibrate-fed animals, the rate of mitochondrial beta-oxidation did not vary significantly between control, ischemic, and perfused tissues. Furthermore, neither in control nor in clofibrate-fed animals did the rates of peroxisomal beta-oxidation of fatty acids vary significantly in the ischemic or reperfused tissues as compared to that of preischemic controls. These results suggest that ischemia does not contribute to any loss of enzymic activity in beta-oxidation of fatty acid cycles either in mitochondria or peroxisomes. Furthermore, the feeding of 0.5% (w/w) clofibrate to pigs increased the rate of mitochondrial beta-oxidation of fatty acids only by 50% while that of peroxisomes increased threefold. A similar threefold increase in catalase activity was also produced by clofibrate feeding. These results suggest that the heart plays a role in the hypolipidemic action of clofibrate.  相似文献   

4.
In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid beta-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C(2) carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid beta-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid beta-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.  相似文献   

5.
The effect of the chain length of fatty acids on peroxisomal enzyme activities of Tetrahymena pyriformis was investigated. The growth of cells and the activities of peroxisomal enzymes were inhibited markedly by the addition of medium-chain fatty acids (C6-C12) to the culture medium, whereas the addition of longer-chain fatty acids (C14-C18) resulted in a slight increase of growth and in the marked stimulation of enzyme activities concerned with fatty acid beta-oxidation and the glyoxylate cycle in peroxisomes. Peroxisomal beta-oxidation (fatty acyl-CoA oxidase) was more potent towards longer-chain fatty acids than the mitochondrial activity (fatty acyl-CoA dehydrogenase). The induction of the peroxisomal beta-oxidation system by palmitate was repressed both by the addition of glucose and the aeration of the culture medium, whereas that of the peroxisomal glyoxylate cycle was repressed only by the addition of glucose to the medium. These results indicate that peroxisomal enzyme systems related to the beta-oxidation of fatty acids and the glyoxylate cycle are regulated by the compositions of fatty acids, glucose, and oxygen in the medium.  相似文献   

6.
Key enzymes involved in oxidation and esterification of long-chain fatty acids were investigated in male rats fed different types and amounts of oil in their diet. A diet with 20% (w/w) fish oil, partially hydrogenated fish oil (PHFO) and partially hydrogenated soybean oil (PHSO) was shown to stimulate the mitochondrial and microsomal palmitoyl-CoA synthetase activity (EC 6.2.1.3) compared to soybean oil-fed animals after 1 week of feeding. Rapeseed oil had no effect. Partially hydrogenated oils in the diet resulted in significantly higher levels of mitochondrial glycerophosphate acyltransferase compared to unhydrogenated oils in the diet. Rats fed 20% (w/w) rapeseed oil had a decreased activity of this mitochondrial enzyme, whereas the microsomal glycerophosphate acyltransferase activity was stimulated to a comparable extent with 20% (w/w) rapeseed oil, fish oil or PHFO in the diet. Increasing the amount of PHFO (from 5 to 25% (w/w)) in the diet for 3 days led to increased mitochondrial and microsomal palmitoyl-CoA synthetase and microsomal glycerophosphate acyltransferase activities with 5% of this oil in the diet. The mitochondrial glycerophosphate acyltransferase was only marginally affected by increasing the oil dose. Administration of 20% (w/w) PHFO increased rapidly the mitochondrial and microsomal palmitoyl-CoA synthetase, carnitine palmitoyltransferase and microsomal glycerophosphate acyltransferase activities almost to their maximum value within 36 h. In contrast, the glycerophosphate acyltransferase and palmitoyl-CoA hydrolase (EC 3.1.2.2) activities of the mitochondrial fraction and the peroxisomal beta-oxidation reached their maximum activities after administration of the dietary oil for 6.5 days. This sequence of enzyme changes (a) is in accordance with the proposal that an increased cellular level of long-chain acyl-CoA species act as metabolic messages for induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase, i.e., these enzymes are regulated by a substrate-induced mechanism, and (b) indicates that, with PHFO, a greater part of the activated fatty acids are directed from triacylglycerol esterification and hydrolysis towards oxidation in the mitochondria. It is also conceivable that the mitochondrial beta-oxidation is proceeding before the enhancement of peroxisomal beta-oxidation.  相似文献   

7.
Physiological role of peroxisomal beta-oxidation in liver of fasted rats   总被引:6,自引:0,他引:6  
In the livers of fasted rats, the activity of peroxisomal palmitocyl-CoA oxidation (NADH production) was increased more rapidly and markedly than that of mitochondrial carnitine palmitoyltransferase, which is the rate limiting enzyme of mitochondrial beta-oxidation. The peroxisomal oxidizing activity was about twice that of the control throughout the period of fasting (1-7 days). carnitine acetyltransferase activity was increased to a similar extent in both peroxisomes and mitochondria. A possible physiological role of liver peroxisomes may thus be as an effective supply of NADH2, acetyl residues and short and medium-length fatty acyl-CoA in the cells on the enhancement of peroxisomal beta-oxidation of the animals under starvation; these substances thus produced may be transported into the mitochondria as energy sources.  相似文献   

8.
The activities of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) were compared with those in the animals fed safflower oil rich in linoleic acid (18:2) and saturated fats (coconut or palm oil). Mitochondrial and peroxisomal palmitoyl-CoA (16:0-CoA) oxidation rates in the liver homogenates were significantly higher in rats fed linseed and perilla oils than in those fed saturated fats and safflower oil. The fatty oxidation rates increased as dietary levels of alpha-18:3 increased. Dietary alpha-18:3 also increased the activity of fatty acid oxidation enzymes except for 3-hydroxyacyl-CoA dehydrogenase. Unexpectedly, dietary alpha-18:3 caused great reduction in the activity of 3-hydroxyacyl-CoA dehydrogenase measured with short- and medium-chain substrates but not with long-chain substrate. Dietary alpha-18:3 significantly increased the mRNA levels of hepatic fatty acid oxidation enzymes including carnitine palmitoyltransferase I and II, mitochondrial trifunctional protein, acyl-CoA oxidase, peroxisomal bifunctional protein, mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases, 2, 4-dienoyl-CoA reductase and delta3, delta2-enoyl-CoA isomerase. Fish oil rich in very long-chain n-3 fatty acids caused similar changes in hepatic fatty acid oxidation. Regarding the substrate specificity of beta-oxidation pathway, mitochondrial and peroxisomal beta-oxidation rate of alpha-18:3-CoA, relative to 16:0- and 18:2-CoAs, was higher irrespective of the substrate/albumin ratios in the assay mixture or dietary fat sources. The substrate specificity of carnitine palmitoyltransferase I appeared to be responsible for the differential mitochondrial oxidation rates of these acyl-CoA substrates. Dietary fats rich in alpha-18:3-CoA relative to safflower oil did not affect the hepatic activity of fatty acid synthase and glucose 6-phosphate dehydrogenase. It was suggested that both substrate specificities and alterations in the activities of the enzymes in beta-oxidation pathway play a significant role in the regulation of the serum lipid concentrations in rats fed alpha-18:3.  相似文献   

9.
Metabolic aspects of peroxisomal beta-oxidation   总被引:5,自引:0,他引:5  
In the course of the last decade peroxisomal beta-oxidation has emerged as a metabolic process indispensable to normal physiology. Peroxisomes beta-oxidize fatty acids, dicarboxylic acids, prostaglandins and various fatty acid analogues. Other compounds possessing an alkyl-group of six to eight carbon atoms (many substituted fatty acids) are initially omega-oxidized in endoplasmic reticulum. The resulting carboxyalkyl-groups are subsequently chain-shortened by beta-oxidation in peroxisomes. Peroxisomal beta-oxidation is therefore, in contrast to mitochondrial beta-oxidation, characterized by a very broad substrate-specificity. Acyl-CoA oxidases initiate the cycle of beta-oxidation of acyl-CoA esters. The next steps involve the bi(tri)functional enzyme, which possesses active sites for enoyl-CoA hydratase-, beta-hydroxyacyl-CoA dehydrogenase- and for delta 2, delta 5 enoyl-CoA isomerase activity. The beta-oxidation sequence is completed by a beta-ketoacyl-CoA thiolase. The peroxisomes also contain a 2,4-dienoyl-CoA reductase, which is required for beta-oxidation of unsaturated fatty acids. The peroxisomal beta-hydroxyacyl-CoA epimerase activity is due to the combined action of two enoyl-CoA hydratases. (For a recent review of the enzymology of beta-oxidation enzymes see Ref. 225.) The broad specificity of peroxisomal beta-oxidation is in part due to the presence of at least two acyl-CoA oxidases, one of which, the trihydroxy-5 beta-cholestanoyl-CoA (THCA-CoA) oxidase, is responsible for the initial dehydrogenation of the omega-oxidized cholesterol side-chain, initially hydroxylated in mitochondria. Shortening of this side-chain results in formation of bile acids and of propionyl-CoA. In relation to its mitochondrial counterpart, peroxisomal beta-oxidation in rat liver is characterized by a high extent of induction following exposure of rats to a variety of amphipathic compounds possessing a carboxylic-, or sulphonic acid group. In rats some high fat diets cause induction of peroxisomal fatty acid beta-oxidation and of trihydroxy-5 beta-cholestanoyl-CoA oxidase. Induction involves increased rates of synthesis of the appropriate mRNA molecules. Increased half-lives of mRNA- and enzyme molecules may also be involved. Recent findings of the involvement of a member of the steroid hormone receptor superfamily during induction, suggest that induction of peroxisomal beta-oxidation represents another regulatory phenomenon controlled by nuclear receptor proteins. This will likely be an area of intense future research. Chain-shortening of fatty acids, rather than their complete beta-oxidation, is the prominent feature of peroxisomal beta-oxidation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA) on hepatic lipids and key enzymes involved in esterification, hydrolysis and oxidation of long-chain fatty acids at increasing doses were investigated in rats. TPA administration tended to decrease the mitochondrial activities of palmitoyl-CoA synthetase and carnitine palmitoyltransferase. The microsomal palmitoyl-CoA synthetase activity was increased. TPA administration was also associated with a dose-dependent increase of glycerophosphate acyltransferase activity both in the mitochondrial and microsomal fractions in particular. The data are consistent with a decreased catabolism of long-chain fatty acids at the mitochondrial level, and an increased capacity for esterification of fatty acids in the microsomal fraction. Peroxisomal beta-oxidation was increased about 2-fold in the peroxisome-enriched fraction of TPA-treated rats while the catalase and urate oxidase activities were only marginally affected. TPA administration revealed elevated capacity for hydrolysis of palmitoyl-CoA and palmitoyl-L-carnitine in the microsomal fraction. Neither increased cytosolic palmitoyl-CoA hydrolase activity nor increased hydroxylation of lauric acid nor changes of the hepatic content of cytochrome P-450 isoenzymic forms were observed in the TPA-treated animals. There was no induction of the protein content of the bifunctional enoyl-CoA hydratase. Thus, TPA behaves more like choline-deficient diet and ethionine treatment than well-known peroxisome proliferators. It seems possible that TPA selectively stimulated the peroxisomal activities, i.e., peroxisomal beta-oxidation rather than evoking a peroxisome proliferation capacity.  相似文献   

11.
Cellular energy metabolism is largely sustained by mitochondrial beta-oxidation of saturated and unsaturated fatty acids. To study the role of unsaturated fatty acids in cellular lipid and energy metabolism we generated a null allelic mouse, deficient in 3,2-trans-enoyl-CoA isomerase (ECI) (eci(-/-) mouse). ECI is the link in mitochondrial beta-oxidation of unsaturated and saturated fatty acids and essential for the complete degradation and for maximal energy yield. Mitochondrial beta-oxidation of unsaturated fatty acids is interrupted in eci(-/-)mice at the level of their respective 3-cis- or 3-trans-enoyl-CoA intermediates. Fasting eci(-/-) mice accumulate unsaturated fatty acyl groups in ester lipids and deposit large amounts of triglycerides in hepatocytes (steatosis). Gene expression studies revealed the induction of peroxisome proliferator-activated receptor activation in eci(-/-) mice together with peroxisomal beta- and microsomal omega-oxidation enzymes. Combined peroxisomal beta- and microsomal omega-oxidation of the 3-enoyl-CoA intermediates leads to a specific pattern of medium chain unsaturated dicarboxylic acids excreted in the urine in high concentration (dicarboxylic aciduria). The urinary dicarboxylate pattern is a reliable diagnostic marker of the ECI genetic defect. The eci(-/-) mouse might be a model of a yet undefined inborn mitochondrial beta-oxidation disorder lacking the enzyme link that channels the intermediates of unsaturated fatty acids into the beta-oxidation spiral of saturated fatty acids.  相似文献   

12.
The investigations previously carried out by Grataroli and colleagues (1) to elucidate the relationships between dietary fatty acids, lipid composition, prostaglandin E2 production and phospholipase A2 activity in the rat gastric mucosa are, here, extended. In the present investigations, fatty acid and prostaglandin E2 catabolizing enzymes were assayed in gastric mucosa from rats fed either a low fat diet (corn oil: 4.4% w/w) (referred as control group), a corn oil-enriched diet (17%) or a salmon oil-enriched diet (12.5%) supplemented with corn oil (4.5%) (referred as groups of treated animals) for eight weeks. Peroxisomal fatty acyl-CoA beta-oxidation was induced in the treated animals whereas the activities of catalase and mitochondrial tyramine oxidase were increased and normal, respectively. Mitochondrial acyl-CoA dehydrogenations occurred at higher rates and carnitine acyltransferase activities were enhanced. In addition, the induction of peroxisomal but not mitochondrial prostaglandoyl-E2-CoA beta-oxidation could be demonstrated. Induction of peroxisomal oxidation of fatty acids and prostaglandins is suggested to contribute to the decrease of prostaglandin E2 production in the treated animals, especially those receiving the salmon oil diet, that the above mentioned authors originally reported.  相似文献   

13.
Seed contamination with polyketide mycotoxins, including aflatoxin (AF) and sterigmatocystin (ST) produced by Aspergillus spp., is an agricultural, economic, and medical issue worldwide. Acetyl-CoA, the fundamental building block of all known fungal polyketides, is generated by a large number of biochemical pathways, including beta-oxidation of fatty acids and glycolysis of sugars. We present several lines of evidence to support a major role for seed fatty acids in formation of AF and ST in A. flavus, A. parasiticus, and A. nidulans. Aspergillus strains exhibiting canonical signs of oleic acid-induced peroxisome proliferation, including increased catalase activity, beta-oxidation gene expression, and peroxisomal clustering, also exhibited a marked increase in toxin gene expression and biosynthesis. Furthermore, microscopic observations showed that the ST and AF precursor norsolorinic acid accumulated in peroxisomes of all three Aspergilli. While a peroxisomal beta-oxidation mutation eliminated oleic acid-induced increases in ST in A. nidulans, a mitochondrial beta-oxidation mutation played a larger role in eliminating ST formation on oatmeal medium and on live corn kernels, implicating a fundamental role for both peroxisomal and mitochondrial beta-oxidation in toxin production.  相似文献   

14.
Human acyl-CoA oxidase 1 (ACOX1) is a rate-limiting enzyme in peroxisomal fatty acids beta-oxidation and its deficiency is associated with a lethal, autosomal recessive disease, called pseudoneonatal-adrenoleukodystrophy. Two mRNA variants, transcribed from a single gene encode ACOX1a or ACOX1b isoforms, respectively. Recently, a mutation in a splice site has been reported [H. Rosewich, H.R. Waterham, R.J. Wanders, S. Ferdinandusse, M. Henneke, D. Hunneman, J. Gartner, Pitfall in metabolic screening in a patient with fatal peroxisomal beta-oxidation defect, Neuropediatrics 37 (2006) 95-98.], which results in the defective peroxisomal fatty acids beta-oxidation. Here, we show that these mRNA splice variants are expressed differentially in human liver. We investigated the biochemical role of the two human ACOX1 isoforms by heterologous expression of the catalytically active ACOX1a and ACOX1b enzymes in Escherichia coli. ACOX1a seems to be more labile and exhibits only 50% specific activity toward palmitoyl-CoA as compared to ACOX1b.  相似文献   

15.
Although beta-oxidation of fatty acids occurs in both peroxisomes and mitochondria, beta-oxidizing enzymes in these organelles have distinct differences in their specifity and sensitivity to inhibitors. In this study, the effects of the phosphodiesterase inhibitor enoximone on hepatic peroxisomal and mitochondrial beta-oxidation were investigated. In liver homogenates from control rats, cyanide-insensitive peroxisomal beta-oxidation of palmitoyl-CoA was inhibited progressively by increasing concentrations of enoximone. Similar results were obtained in liver homogenates from rats pretreated with the known peroxisomal proliferator diethylhexylphthalate. In contrast, mitochondrial beta-oxidation of palmitoyl-CoA was not inhibited by enoximone. These data show that enoximone selectively inhibits basal as well as induced peroxisomal, but not mitochondrial, beta-oxidation of the CoA thioester of long-chain fatty acids. The availability of specific inhibitors of peroxisomal beta-oxidation should prove useful in elucidating regulatory mechanisms operative in this pathway in normal as well as in proliferated peroxisomes.  相似文献   

16.
Data obtained in earlier studies with rats fed diets containing high doses of peroxisome proliferators (niadenate, tiadenol, clofibrate, or nitotinic acid) are used to look for a quantitative relationship between peroxisomal beta-oxidation, palmitoyl-CoA hydrolase, palmitoyl-CoA synthetase and carnitine palmitoyltransferase activities, and the cellular concentration of their substrate and reaction products. The order of the hyperlipidemic drugs with regard to their effect on CoA derivatives and enzyme activities was niadenate greater than tiadenol greater than clofibrate greater than nicotinic acid. Linear regression analysis of long-chain acyl-CoA content versus palmitoyl-CoA hydrolase and peroxisomal beta-oxidation activity showed highly significant linear correlations both in the total liver homogenate and in the peroxisome-enriched fractions. A dose-response curve of tiadenol showed that carnitine palmitoyltransferase and palmitoyl-CoA synthetase activities and the ratio of long-chain acyl-CoA to free CoASH in total homogenate rose at low doses before detectable changes occurred in the peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. A plot of this ratio parallelled the palmitoyl-CoA synthetase activity. The specific activity of microsomally localized carnitine palmitoyl-transferase was low and unchanged up to a dose where no enhanced peroxisomal beta-oxidation was observed, but over this dose the activity increased considerably so that the specific of the enzyme in the mitochondrial and microsomal fractions became comparable. The mitochondrial palmitoyl-CoA synthetase activity decreased gradually. The correlations may be interpreted as reflecting a common regulation mechanism for palmitoyl-CoA hydrolase and peroxisomal beta-oxidation enzymes, i.e., the cellular level of long-chain acyl-CoA acting as the metabolic message for peroxisomal proliferation resulting in induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase activity. The findings are discussed with regard to their possible consequences for mitochondrial fatty acid oxidation and the conversion of long-chain acyl-L-carnitine to acyl-CoA derivatives.  相似文献   

17.
The peroxisomal beta-oxidation of omega-phenyl fatty acids (PFAs) as model compounds for xenobiotic acyl compounds was investigated. In isolated hepatocytes, omega-phenyllauric acid (PFA12) was chain-shortened to PFAs having an even number of carbon atoms in the acyl side chain. Associated with this reaction, H2O2 generation was observed, the rate of which was markedly enhanced by clofibrate treatment of rats. Also when using isolated peroxisomes, such a chain-shortening of PFA12 occurred, associated with stoichiometrical production of NADH and acetyl-CoA. The CoA-ester form of PFA12 as a substrate and NAD as a cofactor were required in this reaction, indicating the participation of peroxisomal beta-oxidation in the chain-shortening of PFA12. When using PFAs with various chain lengths, the rates of H2O2 generation measured as the peroxisomal beta-oxidation in isolated hepatocytes were similar to those with the corresponding fatty acids, whereas the rates of ketone body production measured as the mitochondrial beta-oxidation were much lower than that with any fatty acid examined. From the study with isolated mitochondria and purified enzymes, it was found that the mitochondrial beta-oxidation of PFAs was carnitine-dependent, and that the activities of carnitine palmitoyltransferase for PFA-CoAs are low. Moreover, the activities of acyl-CoA dehydrogenase for PFA-CoAs were lower than those for fatty acyl-CoAs, while the activities of acyl-CoA oxidase for PFA-CoAs were comparable to those for fatty acyl-CoAs. As a result, relatively long chain PFAs were hardly subjected to mitochondrial beta-oxidation. Based on the maximum enzyme activities of the beta-oxidation, which were measured by following acyl-CoA-dependent NAD reduction in isolated peroxisomes and O2 consumption in isolated mitochondria, about 60% of the beta-oxidation of PFA12 in the rat liver was peroxisomal. In clofibrate-treated rats, the value reached about 85%. From these results it is concluded that the peroxisome is one of the important sites of degradation of xenobiotic acyl compounds.  相似文献   

18.
Fatty acid oxidation defects can be acutely fatal, leading to the collection of tissues which are frozen for future analysis. Since peroxisomes can also oxidize long-chain fatty acids, differentiation of the contributions from the peroxisome as opposed to the mitochondria is important. We studied the effects of freezing and storage of rat livers on peroxisomal and mitochondrial beta-oxidation as measured by cyanide sensitivity of the oxidation of [1-14C]oleoyl-CoA to 14CO2 and acid-soluble labeled products. In addition, we examined the effects of freezing and storage on the rate-limiting enzyme for peroxisomal beta-oxidation, acyl-CoA oxidase, by the H2O2 generation method. Marked reduction in the oxidation of [1-14C]oleoyl-CoA was found for both peroxisomal and mitochondrial systems upon freezing at -18 or -70 degrees C for 2 days which declined further on storage at these temperatures for 12 weeks. Loss of activity after freezing was greater for the mitochondrial than the peroxisomal beta-oxidation system. By contrast, acyl-CoA oxidase activity was resistant to these changes, maintaining prefrozen activities despite storage for 12 weeks. The contribution of the peroxisomal system to beta-oxidation was 32% of the total rate of oxidation of [1-14C]oleoyl-CoA in the rat liver. These findings indicate that the contributions of the peroxisomal system to total fatty acid oxidation may be considerable, that freezing of the liver results in drastic reduction in enzyme activities of both peroxisomal as well as mitochondrial beta-oxidation, but that the rate-limiting enzyme of the peroxisomal system, acyl-CoA oxidase, retains full activity despite freezing and storage.  相似文献   

19.
In a study of the endocrine control of peroxisomes, the effects of acute glucagon treatment and fasting on hepatic peroxisomal beta-oxidation in rats have been investigated. The activity of the rate-limiting peroxisomal beta-oxidation enzyme, fatty acyl-CoA oxidase, was measured to determine whether activation of peroxisomal beta-oxidation could account for the increase in total hepatic fatty acid oxidation following acute glucagon exposure. Catalase, a peroxisomal enzyme not directly involved in beta-oxidation, was also measured as a control for total peroxisomal activity. No changes with acute glucagon treatment of intact animals were observed with either activity as measured in liver homogenates or partially purified peroxisomal fractions. These observations indicate the lack of acute control by glucagon of peroxisomal function at the level of total enzyme activity. Previous work on the effects of fasting on hepatic fatty acid beta-oxidation [H. Ishii, S. Horie, and T. Suga (1980) J. Biochem. 87, 1855-1858] suggested an enhanced role for the peroxisomal beta-oxidation pathway during starvation. It was found that the peroxisomal beta-oxidation system, as measured by fatty acyl-CoA oxidase activity, does increase with duration of fast when expressed on a per gram wet weight liver basis. However, when this activity is expressed as total liver capacity, a decline in activity with increasing duration of fast is observed. Furthermore, this decline in peroxisomal capacity parallels the decline in total liver capacity for citrate synthase, a mitochondrial matrix enzyme, and total liver protein. These data indicate that peroxisomal beta-oxidation activity is neither stimulated nor even preferentially spared from proteolysis during fasting.  相似文献   

20.
The purpose of this study was to investigate early biochemical changes and possible mechanisms via which alkyl(C12)thioacetic acid (CMTTD, blocked for beta-oxidation), alkyl(C12)thiopropionic acid (CETTD, undergo one cycle of beta-oxidation) and a 3-thiadicarboxylic acid (BCMTD, blocked for both omega- (and beta-oxidation) influence the peroxisomal beta-oxidation in liver of rats. Treatment of rats with CMTTD caused a stimulation of the palmitoyl-CoA synthetase activity accompanied with increased concentration of hepatic acid-insoluble CoA. This effect was already established during 12-24 h of feeding. From 2 days of feeding, the cellular level of acid-insoluble CoA began to decrease, whereas free CoASH content increased. Stimulation of [1-14C]palmitoyl-CoA oxidation in the presence of KCN, palmitoyl-CoA-dependent dehydrogenase (termed peroxisomal beta-oxidation) and palmitoyl-CoA hydrolase activities were revealed after 36-48 h of CMTTD-feeding. Administration of BCMTD affected the enzymatic activities and altered the distribution of CoA between acid-insoluble and free forms comparable to what was observed in CMTTD-treated rats. It is evident that treatment of peroxisome proliferators (BCMTD and CMTTD), the level of acyl-CoA esters and the enzyme activity involved in their formation precede the increase in peroxisomal and palmitoyl-CoA hydrolase activities. In CMTTD-fed animals the activity of cyanide-insensitive fatty acid oxidation remained unchanged when the mitochondrial beta-oxidation and carnitine palmitoyltransferase operated at maximum rates. The sequence and redistribution of CoA and enzyme changes were interpreted as support for the hypothesis that substrate supply is an important factor in the regulation of peroxisomal fatty acid metabolism, i.e., the fatty acyl-CoA species appear to be catabolized by peroxisomes at high rates only when uptake into mitochondria is saturated. Administration of CETTD led to an inhibition of mitochondrial fatty acid oxidation accompanied with a rise in the concentration of acyl-CoA esters in the liver. Consequently, fatty liver developed. The peroxisomal beta-oxidation was marginally affected. Whether inhibition of mitochondrial beta-oxidation may be involved in regulation of peroxisomal fatty acid metabolism and in development of fatty liver should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号