首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipocytes from spontaneously hypertensive rats (SHR) are not as responsive to isoproterenol or dibutyryl adenosine 3',5'-cyclic monophosphate (cAMP) stimulation compared with Sprague-Dawley or Wistar-Kyoto rats. Lipolytic activity in adipocytes from trained normotensive rats was enhanced in response to 1 microM isoproterenol and 0.5 mM dibutyryl cAMP but not in adipocytes from trained SHR. Decreases in isoproterenol-stimulated (1 microM) cAMP accumulation were evident in adipocytes from trained normotensive rats but not in adipocytes from trained SHR. Basal and agonist-induced lipolysis in fat cells isolated from both normotensive rats and SHR immediately following a 60-min run was increased in both sedentary and trained rats. Adenylate cyclase activity in fat cell membranes was blunted in sedentary and trained SHR both in the absence and presence of 100 microM 5'-guanylyl imidophosphate. No apparent differences existed in antagonist affinity of binding sites for the antagonist dihydroalprenolol in normal rats or SHR. Evidence for a change in affinity of agonist isoproterenol might be indicated based on the enhanced potency of isoproterenol to stimulate lipolysis in trained normal rats. beta-Adrenergic receptor density and antagonist affinity were not different in normotensive rats and SHR in response to training. However, displacement of [3H]dihydroalprenolol in adipocytes from SHR required greater concentrations of isoproterenol compared with adipocytes from normotensive rats, further suggestive of increased agonist affinity of binding sites in normal rats. These data suggest a postreceptor lesion of the lipolytic pathway in adipocytes from spontaneously hypertensive rats, possibly at the guanine nucleotide regulatory protein level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To explore interrelationship between the roles of cAMP and calcium ion in hormone-stimulated lipolysis, cAMP accumulation in rat adipocytes and calcium binding in the endoplasmic reticulum were investigated with special reference to the effects of lipolytic hormones under various conditions. ACTH, isoproterenol, DBcAMP and aminophylline significantly increased ATP-dependent calcium uptake in adipocyte endoplasmic reticulum, but only after they were incubated with intact cells and not when they were added after homogenization. In vivo dexamethasone treatment and A-23187 accelerated, while 2.4-dinitrophenol blunted ACTH-stimulated lipolysis, cAMP accumulation and microsomal calcium uptake in parallel. Adrenalectomy, Mn2+ and adenosine enhanced ACTH-stimulated cAMP accumulation in adipocytes but lowered the calcium uptake and lipolysis. Thus, there was consistent parallelism between hormone-stimulated lipolysis and microsomal calcium uptake throughout the study. These data suggest that changes in the microsomal calcium uptake plays a crucial role in the regulation of hormone-induced lipolysis, irrespective of whether or not the intracellular cAMP concentration is involved in the lipolytic mechanism.  相似文献   

3.
Adipocytes from hypothyroid rats have a decreased responsiveness to agents that activate adenylate cyclase, whereas cells from hyperthyroid rats have an increased responsiveness as compared to the controls. This is reflected in cyclic AMP accumulation as well as lipolysis. Administration of pertussis toxin to rats or its in vitro addition to adipocytes increased basal lipolysis and cyclic AMP accumulation as well as the response to norepinephrine or forskolin. The effects of thyroid status was not abolished by toxin treatment. Pertussis toxin-catalyzed ADP ribosylation of Ni was increased in adipocyte membranes from hypothyroid rats as compared to those from euthyroid rats. However, no change in sensitivity to N6-(phenylisopropyl)adenosine was observed. The data suggest that the amount of Ni might not be rate-limiting for the inhibitory action of adenosine. A consistent decrease in maximal lipolysis was observed in freshly isolated adipocytes from hypothyroid animals as compared to those from the controls. Such defective maximal lipolysis was not corrected by adenosine deaminase or in vivo administration of pertussis toxin. The relationship between cyclic AMP levels and lipolysis suggests that in fat cells from hypothyroid rats either the cyclic AMP-dependent protein kinase or the lipase activity itself may limit maximal lipolysis. There appears to be multiple effects of thyroid status on lipolysis involving factors other than those affecting adenylate cyclase activation.  相似文献   

4.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

5.
Agonist-promoted down-regulation of beta-adrenergic receptor mRNA was investigated in S49 mouse lymphoma variants with mutations in elements of hormone-sensitive adenylate cyclase. In wild-type cells steady-state levels of beta-adrenergic receptor mRNA were established by DNA-excess solution hybridization to be 1.72 +/- 0.08 (n = 8) amol/microgram total cellular RNA. Receptor mRNA levels declined 35-45% in response to stimulation by the beta-adrenergic agonist (-)isoproterenol or forskolin as described previously in DDT1 MF-2 cells (Hadcock, J. R., and Malbon, C. C. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 5021-5025). Agonist-promoted cAMP accumulation and down-regulation of receptor mRNA were analyzed in three variants with mutations in Gs alpha (H21a, unc, cyc-) and a single variant lacking cAMP-dependent protein kinase activity (kin-). H21a (Gs alpha coupled to receptor, but not to adenylate cyclase), unc (Gs alpha uncoupled from receptor), and cyc- (lacking Gs alpha) variants accumulated cAMP and down-regulated beta AR mRNA in response to forskolin. In unc and cyc- cells isoproterenol failed to stimulate cAMP; accumulation and down-regulation of receptor mRNA was not observed. H21a cells, in contrast, displayed agonist-promoted regulation of beta-adrenergic receptor mRNA but only basal levels of cAMP accumulation in response to isoproterenol. The kin- cells displayed cAMP accumulation in response to forskolin as well as to isoproterenol but no down-regulation of receptor mRNA or receptor expression. Taken together these data demonstrate several features of agonist-promoted down-regulation of mRNA: (i) cAMP-dependent protein kinase activity is required for down-regulation of mRNA (kin-), although elevated cAMP accumulation is not (H21a); (ii) functional receptor-Gs coupling is required (H21a), and clones lacking Gs alpha (cyc-) or receptor Gs coupling (unc) lack the capacity to down-regulate mRNA in response to agonist; and (iii) in the presence of basal levels of cAMP and cAMP-dependent protein kinase activity, functional receptor-Gs coupling (H21a) to some other effector other than adenylate cyclase may be propagating the signal.  相似文献   

6.
The present study reports the effects of the lipophylic ionophore X537A on lipolysis and accumulation of cAMP in isolated hamster epidiymal adipocytes. X537A inhibited lipolysis activated with norepinephrine, isoproterenol, dibutyryl cAMP or theophylline but failed to influence basal lipolysis. The minimum effective concentration of X537A required to inhibit lipolysis was between 1 and 3 micrograms/ml; at a concentration of 10 micrograms/ml, X537A inhibited lipolysis by approximately 50%. The antilipolytic effect of X537A does not result from decreased formation of cAMP because the accumulation of cAMP in response to isoproterenol or theophylline was significantly potentiated in the presence of the ionophore. Most of the additional cAMP that accumulated in the presence of X537A was found to be intracellelular, the distribution of cAMP between cells and incubation medium not being influenced by X537A. Neither the basal activity of cAMP dependent protein kinase nor the activity in the presence of isoproterenol or theophylline was influenced by X537A. The effects of X537A on lipolysis and on accumulation of cAMP were found to persist in the absence of extracellular calcium, but adipocytes that were preincubated in a calcium free media containing 4.0 mM EGTA failed to respond to X537A with an increase in cAMP levels. It is concluded that X537A inhibits lipolysis by uncoupling cAMP accumulation from activation of triglyceride lipase by a mechanism unrelated to activation of protein kinase.  相似文献   

7.
The aim of the present study was to gain insight into the signaling pathway used by leptin to stimulate lipolysis. The lipolytic rate of white adipocytes from sex- and age-matched lean (+/+) and fa/fa rats was determined in the absence or presence of leptin together with a number of agents acting at different levels of the signaling cascade. Leptin did not modify FSK-, dbcAMP-, and IBMX-stimulated lipolysis. Lipolysis can also be maximally stimulated by lowering media adenosine levels with adenosine deaminase (ADA), i.e., in the ligand-free state. Although ADA produced near maximal lipolysis in adipocytes of lean animals, only half of the maximal lipolytic rate (50.9+/-3.2%) was achieved in fat cells from fa/fa rats (P=0.0034). In adipocytes from lean animals preincubated with ADA, leptin caused a concentration-related stimulation of lipolysis (P=0.0001). However, leptin had no effect on the lipolytic activity of adipocytes in the ligand-free state from fa/fa rats. The adenosine A1 receptor agonist CPA effectively inhibited basal lipolysis in both lean and obese adipocytes (P=0.0001 and P=0.0090, respectively). Leptin had no effect on the lipolytic rate of adipocytes isolated from fa/fa rats and preincubated with CPA. When adipocytes were incubated with the A1 receptor antagonist DPCPX, a significant increase in glycerol release was observed in fa/fa fat cells (P=0.009), whereas cells isolated from lean rats showed no differences to ADA-stimulated lipolysis. After pretreatment with PTX, which inactivates receptor-mediated Gi function, adipocytes of obese rats became as responsive to the stimulatory actions of ISO as cells from lean rats (P=0.0090 vs. ISO in fa/fa rats; P=0.2416 vs. lean rats, respectively). PTX treatment of lean cells, however, did not alter their response to this lipolytic agent. It can be concluded that the lipolytic effect of leptin is located at the adenylate cyclase/Gi proteins level and that leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes.  相似文献   

8.
Various saturated and unsaturated fatty acids were included in the culture medium to test their effects on lipolysis in 3T3-L1 adipocytes. Following prolonged incubation, only oleate was found to exert enhancing effect on basal and isoproterenol-stimulated lipolysis. The effect of oleate was concentration-dependent and was accompanied with increased intracellular cAMP content. Furthermore, the lipolytic response induced by isobutyl-methylxanthine, forskolin or dibutyryl cAMP was also increased in adipocytes treated with oleate. Thus, it appears that in addition to an increased cAMP accumulation, a step distal to cAMP production in the cells may be involved in inducing enhanced lipolysis in 3T3-L1 adipocytes by prolonged exposure to oleate.  相似文献   

9.
Regulation of hormone action with aging has been extensively studied; adipocytes provide an interesting model for some of these questions. We have compared the ability of insulin to stimulate glucose uptake and suppress lipolysis in adipocytes isolated from two month and twelve month-old rats. The ability of insulin to stimulate maximal glucose transport was decreased in adipocytes from the older rats (P less than 0.001); as well, insulin's EC50 was also higher (P less than 0.01) in these cells. Furthermore, these defects were present when insulin-stimulated glucose transport was measured in the presence or absence of adenosine deaminase which metabolizes endogenously released adenosine. Endogenously released adenosine is a stimulator of glucose transport and an inhibitor of lipolysis. Maximal suppression of isoproterenol-induced lipolysis by insulin was similar when adipocytes isolated from the two age groups were incubated in the absence of adenosine deaminase. However, maximal insulin-mediated suppression of lipolysis was found to be significantly decreased (P less than 0.001) in adipocytes isolated from older rats when the experiments were done in the presence of adenosine deaminase; also, insulin's EC50 was increased in these cells under these conditions (P less than 0.001). These results emphasize the importance of the adenosine receptor in modulating the response of isolated adipocytes to insulin, particularly for lipolysis, and document the presence of age-associated defects in insulin regulation of both glucose transport and lipolysis.  相似文献   

10.
Berberine, a hypoglycemic agent, has been shown to decrease plasma free fatty acids (FFAs) level in insulin-resistant rats. In the present study, we explored the mechanism responsible for the antilipolytic effect of berberine in 3T3-L1 adipocytes. It was shown that berberine attenuated lipolysis induced by catecholamines, cAMP-raising agents, and a hydrolyzable cAMP analog, but not by tumor necrosis factor α and a nonhydrolyzable cAMP analog. Unlike insulin, the inhibitory effect of berberine on lipolysis in response to isoproterenol was not abrogated by wortmannin, an inhibitor of phosphatidylinositol 3-kinase, but additive to that of PD98059, an extracellular signal-regulated kinase kinase inhibitor. Prior exposure of adipocytes to berberine decreased the intracellular cAMP production induced by isoproterenol, forskolin, and 3-isobutyl-1-methylxanthine (IBMX), along with hormone-sensitive lipase (HSL) Ser-563 and Ser-660 dephosphorylation, but had no effect on perilipin phosphorylation. Berberine stimulated HSL Ser-565 as well as adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. However, compound C, an AMPK inhibitor, did not reverse the regulatory effect of berberine on HSL Ser-563, Ser-660, and Ser-565 phosphorylation, nor the antilipolytic effect of berberine. Knockdown of AMPK using RNA interference also failed to restore berberine-suppressed lipolysis. cAMP-raising agents increased AMPK activity, which was not additive to that of berberine. Stimulation of adipocytes with berberine increased phosphodiesterase (PDE) 3B and PDE4 activity measured by hydrolysis of 3[H]cAMP. These results suggest that berberine exerts an antilipolytic effect mainly by reducing the inhibition of PDE, leading to a decrease in cAMP and HSL phosphorylation independent of AMPK pathway.  相似文献   

11.
AMP-activated protein kinase (AMPK) is activated in adipocytes during exercise and other states in which lipolysis is stimulated. However, the mechanism(s) responsible for this effect and its physiological relevance are unclear. To examine these questions, 3T3-L1 adipocytes were treated with cAMP-inducing agents (isoproterenol, forskolin, and isobutylmethylxanthine), which stimulate lipolysis and activate AMPK. When lipolysis was partially inhibited with the general lipase inhibitor orlistat, AMPK activation by these agents was also partially reduced, but the increases in cAMP levels and cAMP-dependent protein kinase (PKA) activity were unaffected. Likewise, small hairpin RNA-mediated silencing of adipose tissue triglyceride lipase inhibited both forskolin-stimulated lipolysis and AMPK activation but not that of PKA. Forskolin treatment increased the AMP:ATP ratio, and this too was reduced by orlistat. When acyl-CoA synthetase, which catalyzes the conversion of fatty acids to fatty acyl-CoA, was inhibited with triacsin C, the increases in both AMPK activity and AMP:ATP ratio were blunted. Isoproterenol-stimulated lipolysis was accompanied by an increase in oxidative stress, an effect that was quintupled in cells incubated with the AMPK inhibitor compound C. The isoproterenol-induced increase in the AMP:ATP ratio was also much greater in these cells. In conclusion, the results indicate that activation of AMPK in adipocytes by cAMP-inducing agents is a consequence of lipolysis and not of PKA activation. They suggest that AMPK activation in this setting is caused by an increase in the AMP:ATP ratio that appears to be due, at least in part, to the acylation of fatty acids. Finally, this AMPK activation appears to restrain the energy depletion and oxidative stress caused by lipolysis.  相似文献   

12.
Adipocytes from spontaneously hypertensive rats demonstrated a blunted lipolytic response to isoproterenol and dibutyryl cyclic AMP. (-)-[3H]Dihydroalprenolol binding was examined in adipocytes from normotensive and spontaneously hypertensive rats. Increasing concentrations of isoproterenol decreased total (-)-[3H]dihydroalprenolol binding to intact cells from normotensive rats, and the efficacy of competition was decreased in adipocytes from spontaneously hypertensive rats. Scatchard analysis indicated that the number of (-)-[3H]dihydroalprenolol binding sites and the affinity of dihydroalprenolol binding were comparable between normotensive and spontaneously hypertensive rats. Isoproterenol- and Gpp(NH)p-stimulated adenylate cyclase activity was consistently depressed in adipocyte membranes from spontaneously hypertensive rats as compared to normotensive rats. No difference in fluoride-stimulated adenylate cyclase activity was observed. The blunted lipolytic and cyclic AMP response to isoproterenol in these cells suggest a postreceptor lesion of the lipolytic pathway (possibly the guanine nucleotide regulatory protein) in adipocytes from spontaneously hypertensive rats. The blunted lipolytic response to dibutyryl cyclic AMP suggests defective regulation of lipolytic enzymes at the protein kinase-hormone-sensitive lipase level.  相似文献   

13.
Male Wistar rats, 6-8 week old, were fasted for 72 hours. The in vitro lipolytic activity of epididymal adipocytes was measured in the presence of adrenalin (a alpha and beta adrenergic agonist), isoprenaline (a pure beta agonist), theophylline (a phosphodiesterase inhibitor) or UK 14304 (a alpha 2 adrenoceptor agonist) associated with adenosine deaminase. The basal lipolytic activity, expressed per 100 mg lipids, was higher in fasted adipocytes than in fed ones. Its stimulation by adrenalin or isoproterenol was decreased by fast. The effects of these drugs were more potentiated by theophylline in fasted adipocytes than in fed ones. The UK 14304 inhibition of adenosine deaminase-stimulated lipolysis was about 20% in fasted adipocytes and 50% in fed adipocytes. The in vitro resistance of fasted adipocytes to the lipolytic effect of adrenalin or isoproterenol may be related to the hypothyroid status of fasted rats.  相似文献   

14.
AMP-activated protein kinase (AMPK) is a phylogenetically conserved intracellular energy sensor that has been implicated as a major regulator of glucose and lipid metabolism in mammals. However, its possible role in mediating or influencing the adrenergic control of lipolysis in adipocytes remains uncertain. In this study, we utilized the murine cultured preadipocyte line 3T3-L1 to examine this question. Treatment of adipocytes with isoproterenol or forskolin promoted the phosphorylation of AMPK at a critical activating Thr-172 residue in a dose- and time-dependent manner. This correlated well with a stimulation of the activity of AMPK, as measured in the immune complex. Analogs of cAMP mimicked the effect of isoproterenol and forskolin on AMPK phosphorylation. Treatment of adipocytes with insulin reduced both basal and forskolin-induced AMPK phosphorylation via a pathway dependent on phosphatidylinositol 3'-kinase. Overexpression of a dominant-inhibitory mutant of AMPK blocked isoproterenol-induced lipolysis by approximately 50%. These data indicate that there exists a novel pathway by which cAMP can lead to the activation of AMPK, and in adipocytes, this is required for maximal activation of lipolysis.  相似文献   

15.
The possible presence of α adrenergic control of lipolysis and cyclic AMP production in brown adipocytes of hamsters was studied in adipocytes isolated from interscapular, subscapular, cervical and axillary regions of normal male hamsters maintained at 25°C. Lipolysis activated by either 3-isobutyl-1-methyl xanthine or isoproterenol was unaffected by the presence of the α adrenergic selective agonists clonidine and methoxamine. Similarly, accumulation of cyclic AMP in response to β-receptor stimulation, alone or in combination with a methyl xanthine, was unaffected by clonidine or methoxamine. In contrast, both lipolysis and cyclic AMP accumulation in brown fat cells were effectively suppressed in the presence of nicotinic acid, prostaglandin E1 or N6-phenylisopropyl adenosine. Accumulation of cyclic AMP in response to the mixed agonist norepinephrine was not influenced when cells were exposed to the alpha adrenergic blocking drugs yohimbine or tolazoline. These observations suggest that alpha-2 adrenergic receptors which are present on hamster white fat cells and control production of cyclic AMP and lipolysis are absent from hamster brown adipocytes. On the other hand, brown fat cells of this species appear to respond to a number of other inhibitory compounds in a manner not markedly different from that of white adipocytes.  相似文献   

16.
The activation of P2-receptors has a wide range of diverse effects in many tissues. Here we show that extracellular ATP stimulates lipogenesis in adipocytes derived from the epididymal fat pads of male Wistar rats. The lipogenic effect of ATP is not susceptible to treatment of adipocytes with adenosine deaminase or an adenosine receptor antagonist. Degradation of ATP in adipocyte suspension by ectonucleotidases is slow and remaining ATP concentrations are sufficient to activate P2-receptors. ATP does not affect basal or insulin stimulated glucose transport, or basal or isoproterenol stimulated lipolysis, respectively. The lipogenic effect of ATP is mimicked by the adenine compounds, ADP, AMP, and beta,gamma-methylene-ATP, but not by other nucleotides (UTP, UDP, CTP, GTP, ITP, and diadenosine tetraphosphate), indicating that extracellular nucleotides stimulate lipogenesis via a P2-receptor. ATP and its receptor may define a signalling system in adipocytes, which regulates fat stores independently from established hormones.  相似文献   

17.
The effects of age and cellularity on lipolysis have been investigated in isolated epididymal fat cells from both Swiss albino mice and Sprague-Dawley rats. No significant lipolytic response to glucagon could be demonstrated with adipocytes from either young or old mice, while glycerol output was increased by this hormone with fat cells from young rats. Larger adipocytes from older mice showed significantly greater isoproterenol-stimulated lipolysis than those from younger animals if the glycerol output was expressed on a per cell basis. However, the lipolytic response per cell appeared to be equivalent in young and old rat adipocytes with either isoproterenol or ACTH-(1-24). In a complete aging study, relationships between body weight, epididymal fat pad weight and cellularity were examined covering the life span of the mouse. ACTH-(1-24)- and dibutyryl cyclic AMP-stimulated lipolysis increased with age and cell size but fell at senescence when adipocyte size diminished. Although an effect of aging per se cannot be ruled out with the experimental techniques used in the present study, a dominant influence of adipocyte size on the lipolytic process was demonstrated.  相似文献   

18.
Receptor binding studies (?)-[3H]dihydroalprenolol as the ligand revealed, in adrenalectomized rat fat cells, a 50% decrease in the number of β-adrenergic receptors. er cell with no change in the receptor affinity for this ligand. Adrenalectomy caused no change in the binding affinity for isoproterenol of both high affinity and low affinity populations of the β-adrenergic receptors. Guanine nucleotide sensitivity of the agonist binding to β-receptors was also unaltered by adrenalectomy. Adrenalectomy caused a 30–40% decrease in the maximal response of adenylate cyclase to (?)-isoproterenol only when guanine nucleotides were present in the assay, without altering the (?)-isoproterenol concentration giving half-maximal adenylate cyclase stimulation (Kact values). The maximal response of adenylate cyclase to Gpp(NH)p also was lower in adrenalectomized membranes, indicating a defect at the guanine nucleotide regulatory site. Removal of adenosine by addition of adenosine deaminase failed to reverse the decreased adenylate cyclase response to isoproterenol in adrenalectomized rats. However, in intact fat cells, in which cyclic AMP accumulation in response to isoproterenol was decreased by adrenalectomy, removal of adenosine almost completely corrected this defect. These results indicate that the observed changes in the number of β-adrenergic receptors and in the ability of guanine nucleotides to stimulate adenylate cyclase, though explaining the decreased adenylate cyclase responsiveness to catecholamines, do probably not contribute significantly to the mechanism by which adrenalectomy decreases the lipolytic responsiveness of adipocyte to catecholamines. In addition, this study also suggests that the increased sensitivity to adenosine of lipolysis reported in adipocytes from adrenalectomized rats may result from an action of adenosine at a post-adenylate cyclase step, possibly on the cyclic AMP phosphodiesterase.  相似文献   

19.
The role of adenosine 3',5'-cyclic monophosphate (cAMP) as an intracellular second messenger of luteinizing hormone (LH) was reinvestigated in vitro with diterpene forskolin, a highly specific activator of adenylate cyclase. Treatment of cultured testicular cells from adult hypophysectomized rats with increasing concentrations (10(7)-10(-4) M) of forskolin produced dose-dependent increments in cAMP and testosterone accumulation. Concomitant blockade of cAMP-phosphodiesterase activity with 3-isobutyl-1-methyl-xanthine (10(-4) M) resulted in significant (P less than 0.05) enhancement of the forskolin effect for all but the 10(-4) M forskolin dose. Potency evaluation as judged by half-maximal stimulation of testosterone accumulation revealed median effective doses (mean +/- SE) of 1.25 +/- 0.2 x 10(-5), 1.7 +/- 0.5 x 10(-5), and 2.5 +/- 0.4 x 10(-10) M for forskolin, N6, O2'-dibutyryl cAMP (Bt2cAMP), and human chorionic gonadotropin (hCG), respectively. Examination of the time requirements of forskolin disclosed time-dependent increments in the accumulation of extracellular cAMP and testosterone, the earliest significant (P less than 0.05) increases being noted by 6 hr of treatment. In comparison, a minimal time requirement of less than or equal to 12 hr was noted for hCG- and choleragen-stimulated androgen biosynthesis, whereas the apparent onset of action of Bt2cAMP was delayed to the 24-hr time point. Although 10(-7) M of forskolin by itself did not alter the accumulation of testosterone, its addition resulted in substantial amplification of the hCG effect, producing a 4.6-fold reduction in the median effective dose (ED50) of hCG. Moreover, concurrent treatment with this functionally inert dose of forskolin rendered steroidogenically inert doses of hCG (eg, 10(-11) or 3 x 10(-11) M) steroidogenically potent. However, combined treatment with maximally stimulatory doses of Bt2cAMP (10(-4) M) and one of several testicular cell agonists [forskolin (10(-4) M), choleragen (10(-9) M) or hCG (10(-9) M)] did not prove additive. Taken together, our findings indicate that forskolin, like LH, is capable of stimulating testicular cAMP generation as well as androgen biosynthesis and that a functionally inert low dose of forskolin can significantly amplify LH hormonal action. Inasmuch as forskolin-stimulated and forskolin-amplified hormonal action are acceptable as novel criteria of cAMP dependence, our observations provide new evidence in keeping with the notion that cAMP may be in intracellular second messenger of LH.  相似文献   

20.
Estradiol administration (5 micrograms per day x 4 days) to ovariectomized rats resulted in a 60-70% increase in the maximal lipolytic response of their white adipocytes to isoproterenol, epinephrine, IBMX and forskolin. These altered lipolytic responses were accompanied by parallel changes in the intracellular cyclic AMP levels found in response to 1 mM IBMX alone (+ 106%) or combined with submaximal concentrations of isoproterenol (+205%), epinephrine (+190%) and forskolin (235%). Studies of the adenylate cyclase activity revealed an overall increase in the stimulatory responsiveness of the enzyme (+150 to +200%) after the estradiol-treatment, regardless of the stimulatory agents tested (GTP, GppNHp, fluoride, isoproterenol, ACTH, forskolin). Finally, the finding of a 2-fold enhancement of the Mn2+ (+/- GDP beta S)-stimulated adenylate cyclase activity after the estradiol-treatment strongly suggests that increased activity of the catalytic subunit of this enzyme is the likely mechanism whereby estrogens promote lipolysis in rat fat cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号