首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The cholate method originally introduced by Kagawa et al. (J. Biol. Chem. (1973) 248, 676–684) and further developed by Brunner et al. (Biochim. Biophys. Acta (1976) 455, 322–331) has been used to prepare single bilayer vesicles containing 5 mol% lysophosphatidylcholine embedded in a matrix of phosphatidylcholine. The distribution of lysophosphatidylcholine over outer and inner monolayer was found to be highly asymmetric (ratio 9 : 1), as determined by lysophospholipase treatment of the vesicles. This distribution is similar to the value found in sonicated vesicles.Up to 20 mol% cholesterol could be incorporated in the vesicles by the cholate method. The method was succesfully used also for the preparation of single bilayer vesicles from total rat liver microsomal lipids, to which 5 mol% of 1-[1-14C]palmitoyl lysophosphatidylcholine had been added. Surprisingly, almost 100% of lysophosphatidylcholine in the latter vesicles was directly available for hydrolysis by lysophospholipase. In contrast, only 70% of the lysophosphatidylcholine in sonicated vesicles of similar composition could be hydrolyzed by lysophospholipase.  相似文献   

2.
N E Gabriel  M F Roberts 《Biochemistry》1986,25(10):2812-2821
Stable unilamellar vesicles formed spontaneously upon mixing aqueous suspensions of long-chain phospholipid (synthetic, saturated, and naturally occurring phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin) with small amounts of short-chain lecithin (fatty acid chain lengths of 6-8 carbons) have been characterized by using NMR spectroscopy, negative staining electron microscopy, differential scanning calorimetry, and Fourier transform infrared (FTIR) spectroscopy. This method of vesicle preparation can produce bilayer vesicles spanning the size range 100 to greater than 1000 A. The combination of short-chain lecithin and long-chain lecithin in its gel state at room temperature produces relatively small unilamellar vesicles, while using long-chain lecithin in its liquid-crystalline state produces large unilamellar vesicles. The length of the short-chain lecithin does not affect the size distribution of the vesicles as much as the ratio of short-chain to long-chain components. In general, additional short-chain decreases the average vesicle size. Incorporation of cholesterol can affect vesicle size, with the solubility limit of cholesterol in short-chain lecithin micelles governing any size change. If the amount of cholesterol is below the solubility limit of micellar short-chain lecithin, then the addition of cholesterol to the vesicle bilayer has no effect on the vesicle size; if more cholesterol is added, particle growth is observed. Vesicles formed with a saturated long-chain lecithin and short-chain species exhibit similar phase transition behavior and enthalpy values to small unilamellar vesicles of the pure long-chain lecithin prepared by sonication. As the size of the short-chain/long-chain vesicles decreases, the phase transition temperature decreases to temperatures observed for sonicated unilamellar vesicles. FTIR spectroscopy confirms that the incorporation of the short-chain lipid in the vesicle bilayer does not drastically alter the gauche bond conformation of the long-chain lipids (i.e., their transness in the gel state and the presence of multiple gauche bonds in the liquid-crystalline state).  相似文献   

3.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

4.
High-resolution proton and carbon-13 NMR of membranes: why sonicate?   总被引:2,自引:0,他引:2  
E Oldfield  J L Bowers  J Forbes 《Biochemistry》1987,26(22):6919-6923
We have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-cholesterol (1:1) multibilayers, using "magic-angle" sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol systems, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while with 13C NMR, we demonstrate that most 13C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13C MASS NMR, spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultrasonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra.  相似文献   

5.
The regulation of lecithin:cholesterol acyltransferase by changes in phospholipid bilayer fluidity was investigated using pyrene excimer fluorescence to measure fluidity. Fluidity of dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles was decreased by the addition of up to 20% (mol/mol) cholesterol and increased by the addition of up to 10% (mol/mol) lysoDMPC. When both cholesterol and lysoDMPC are present in the bilayer, their individual effects on fluidity are altered. These changes can be explained by complex formation between cholesterol and phospholipid as in the model of Presti et al. (Presti, F.C., Pace, R.J. and Chan, S.I. (1982) Biochemistry 21, 3831-3335). Lecithin:cholesterol acyltransferase activity with these vesicles as substrates was measured to determine whether activity can be modulated by the fluidity changes of the bilayer on which the enzyme acts. When 10% lysoDMPC, a known lecithin:cholesterol acyltransferase inhibitor, is added to the vesicles, inhibition of activity is observed. When 7.5% lysoDMPC is added to vesicles which contain either 5 or 10% cholesterol, lecithin:cholesterol acyltransferase activity increases. This increase in lecithin:cholesterol acyltransferase activity due to vesicle-fluidity increase is sufficient to overcome the decrease in activity due to lecithin:cholesterol acyltransferase inhibition. This is the first report of the ability of lysoDMPC to increase lecithin:cholesterol acyltransferase activity.  相似文献   

6.
Depending on their phospholipid composition, liposomes are endocytosed by, or fuse with, the plasma membrane, of Acanthamoeba castellanii. Unilamellar egg lecithin vesicles are endocytosed by amoeba at 28 degrees C with equal uptake of the phospholipid bilayer and the contents of the internal aqueous space of the vesicles. Uptake is inhibited almost completely by incubation at 4 degrees C or in the presence of dinitrophenol. After uptake at 28 degrees C, the vesicle phospholipid can be visualized by electron microscope autoradiography within cytoplasmic vacuoles. In contrast, uptake of unilamellar dipalmitoyl lecithin vesicles and multilamellar dipalmitoyl lecithin liposomes is only partially inhibited at 4 degrees C, by dinitrophenol and by prior fixation of the amoebae with glutaraldehyde, each of which inhibits pinocytosis. Vesicle contents are taken up only about 40% as well as the phospholipid bilayer. Electron micrographs are compatible with the interpretation that dipalmitoyl lecithin vesicles fuse with the amoeba plasma membrane, adding their phospholipid to the cell surface, while their contents enter the cell cytoplasm. Dimyristoyl lecithin vesicles behave like egg lecithin vesicles while distearoyl lecithin vesicles behave like dipalmitoyl lecithin vesicles.  相似文献   

7.
The influence of the index of refraction of the solvent on light scattering properties of lecithin bilayer vesicles is described. Large vesicles (diameter 300 nm) are considered where one lamella separates the intravesicular compartment from the external medium. Stationary and transient cases are distinguished with special emphasis on the isotopic substitution of the solvent, i.e. H2O vs. D2O. Theoretical calculations based on the Mie theory of light-scattering are in accord with results from experiments. The two stationary cases considered serve to calibrate the numerical calculations and illustrate the capability of the method. Transient experiments allow the determination of permeation rates; in particular the D2O/H2O permeability coefficients can be obtained. Single component vesicular lecithin bilayers and ones containing tocopherol are compared. In the crystalline state the incorporation of tocopherol increases the fluidity of the lipid bilayer in parallel with the water permeation rate.  相似文献   

8.
The four peptide analogs of the amphipathic helix whose interactions with dimyristoyl phosphatidylcholine were described in the preceding paper were compared with apolipoproteins (apo) A-I and A-II in ability to displace native apolipoprotein from high density lipoprotein (HDL) and in ability to activate lecithin:cholesterol acyltransferase. The rank order of the ability of the four peptide analogs to displace apo-A-I from intact HDL was 18A-Pro-18A greater than 18A greater than des-Val10-18A greater than reverse-18A, the same order suggested in the preceding paper for relative lipid affinities. Modified HDL from which 40% of the apo-A-I had been displaced by 18A was indistinguishable from unmodified HDL in its ability to act as a lecithin:cholesterol acyltransferase substrate. This suggests that the easily displaced apo-A-I molecules in polydisperse HDL are relatively ineffectual as lecithin:cholesterol acyltransferase activators and/or 18A replaces the lecithin:cholesterol acyltransferase activity lost. The peptide analog 18A-Pro-18A was found to be a powerful activator of lecithin:cholesterol acyltransferase when incubated with unilamellar egg phosphatidylcholine (PC) vesicles, reaching 140% of the activity of apo-A-I at a 1:1.75 peptide-to-egg PC ratio. In another experiment, it was found that discoidal egg PC complexes of 18A-Pro-18A, 18A, and des-Val10-18A, formed by cholate dialysis, had 30-45% of the activity of apo-A-I/egg PC discoidal complexes, also formed by cholate dialysis, at the same peptide/lipid weight ratio. Examination of the structures formed when the 18A-Pro-18A peptide was incubated with unilamellar egg PC vesicles indicated that the ability of 18A-Pro-18A to exceed apo-A-I in lecithin:cholesterol acyltransferase activating ability is due to the spontaneous conversion by 18A-Pro-18A of egg PC vesicles to small protein annulus-bilayer disc structures. Apo-A-I, apo-A-II, nor any of the other three peptide analogs of the amphipathic helix studied were able to convert a significant fraction of egg PC unilamellar vesicles to discoidal structures.  相似文献   

9.
We have used ESR and NMR linewidth broadening by spin-labels to determine the overall orientation of spin-labeled analogues of cholesterol and androstanol in egg lecithin bilayers. While the cholesterol analogues were found to have a single orientation in each monolayer, with the acyl chain pointing towards the center of the bilayer, the androstanol analogue appeared, at least in sonicated vesicles, to experience two opposite orientations in the same monolayer, very likely with a rapid reorientation. The possibility of rapid vertical fluctuations of the sterol molecules within the phospholipid bilayer is also discussed.  相似文献   

10.
Abstract

Soybean lecithin disperses into water forming multilamellar liposomes, which on sonication produce vesicles of the order of 40–50nm (diameter), as determined by Photon Correlation Spectroscopy (PCS). The effect of concentration of lecithin and sonication time was systematically investigated. Vesicles were then prepared by incorporation of A – B – A block copolymers of polyethylene oxide (PEO) and polypropylene oxide(PPO), i.e.(PEO-PPO-PEO), in order to construct systems of increased steric stability. The effect of the molecular weight of the PEO and PPO chains on the vesicle size was systematically studied by using various molecules to prepare the vesicles. Initial addition of these (tri-)block copolymers causes an increase in the size of the vesicles. This increase continues until a certain concentration of block copolymer is reached, after which a decrease in size is observed. The initial increase was thought to be due to the incorporation of the block copolymer onto the vesicle bilayer. The reduction at high surfactant concentration is thought to be due to solubilization of the bilayer and the ultimate breakdown of the vesicles. Electrophoresis experiments showed a reduction in the ξ-potential of the vesicles on incorporation of the block copolymer which can be attributed to the shift of the shear plane. Various models are presented to describe this incorporation. The vesicles prepared using the block copolymers are believed to enhance the steric effects and so lead to more stable and pharmaceutically optimum systems.  相似文献   

11.
1. The intermediate structures formed during dialysis of mixtures of cholate, phospholipid and cytochrome c oxidase were analysed by gel chromatography and electron microscopy. Measurements of trapped phosphate and the degree of respiratory control were used to assess the integrity of the vesicular structures formed. Protein orientation in the bilayer was monitored by the accessibility of cytochrome c to cytochrome c oxidase. 2. The results indicate that proteoliposome formation by the detergent-dialysis procedure takes place in three distinct stages. In the first stage, cholate/phospholipid and cholate/phospholipid/protein micelles coexist in solution and grow in size as the detergent is slowly removed. At a detergent/phospholipid molar ratio of about 0.2, micelle fusion results in the formation of large bilayer aggregates permeable to both phosphate and cytochrome c. It is at this stage that cytochrome c oxidase is incorporated into the bilayer. In the final stage of dialysis the bilayer sheets fragment into small unilamellar vesicles. 3. The orientation of membrane protein in the final vesicles appears to be determined by the effect of protein conformation on the initial curvature of the bilayer sheets during the fragmentation process.  相似文献   

12.
The vesicle-micelle transition of egg phosphatidylcholine (PC) and sodium cholate was described by comparing cryo-transmission electron microscopic (cryo-TEM) images of the structures formed to the associated turbidity changes. These experiments were designed to identify the morphology of the intermediates between vesicles and small spheroidal mixed micelles. With increasing cholate concentration, the vesicular structures changed size and more multilamellar vesicles were seen. Between the apparent upper and lower phase boundaries, three structures were observed: open vesicles, large bilayer sheets (twenty to several hundred nanometers in diameter), and long (150-300 nm) flexible cylindrical micelles. The cylindrical micelles evolved from the edges of the bilayer sheets. At higher relative cholate concentration, the phase boundary was sharply defined by optical clarification of the egg PC-cholate mixtures. Cryo-TEM revealed only small spheroidal mixed micelles at this transition. These results provide the first direct evidence of the structural pathway or of molecular intermediates between a lamellar and a micellar state. Understanding these specific intermediates and the transitions between them is essential to developing reconstitution protocols and properly analyzing either activity or structural data obtained from cholate-dispersed membrane proteins.  相似文献   

13.
A one-step purification method for halorhodopsin was developed. Functional proteoliposomes were prepared from this preparation using cholate, which is removed by dialysis in the presence of asolectin or the polar halobacterial lipids. Light-induced outward directed transport of chloride by halorhodopsin was followed by measuring passive proton efflux in the presence of uncoupler; initial rates and extents amounted to significant fractions of values obtained for halorhodopsin-containing cell envelope vesicles. The transport activity was much higher when cholate rather than octyl glucoside was used in the reconstitution. Since CD spectra in cholate but not in octyl glucoside showed band-splitting in the visible region, suggestive of exciton interaction between halorhodopsin monomers, the reconstitution may depend on an aggregate state of the halorhodopsin. The rate constants for three thermal steps in the halorhodopsin photocycle were greatly reduced in the detergent-solubilized samples, but they increased in the proteoliposomes to values similar to those for halorhodopsin in cell envelope vesicles. Thus, the reconstitution yields halorhodopsin with both photochemical and transport activities restored. Freeze-fracture electron micrographs of the proteoliposomes showed unilammellar liposomes with numerous particles of 100-150 A diameter at the fracture faces. These should correspond to halorhodopsin aggregates, formed in the bilayer in an apparently concentration-dependent manner.  相似文献   

14.
The 13C NMR chemical shifts and spin-lattice relaxation times of D-galactosylsphingosine derivatives in CDCl3-CD3OD and in egg-yolk lecithin vesicles in D2O, and of N-acetylpsychosine micelles, are reported. Results with sonicated, unilamellar vesicles containing cerebroside and EYLa show that (1) cerebrosides decrease the fluidity of the lecithin bilayer membrane and have the greatest effect on the glycerol backbone and choline methyl carbons. (2) N-acetylpsychosine experiences a greater freedom of motion in the galactose region than does cerebroside and does not reduce the fluidity of the lecithin as much as cerebroside. (3) Ac-Psy/EYL vesicles formed are permeable to Yb3+ but cerebroside/lecithin vesicles are not. (4) The choline groups on the inner bilayer surface are less mobile than those on the outer surface according to preliminary T1 measurements of the Yb3+-separated resonances. (5) Yb3+-induced chemical shifts of choline methyl and choline CH2OP peaks in mixed cerebroside-lecithin vesicle systems indicate a small preference for cerebroside in the outside monolayer. The data show that these molecules have significant effects on bilayer conformational mobilities, particularly near the surface, and thus demonstrate one mechanism for modulation of cell surface properties by glycosphingolipids.  相似文献   

15.
The interaction of sodium deoxycholate, sodium cholate and octyl glucoside with sonicated vesicles of L alpha-dimyristoyl-phosphatidylcholine (DMPC) and L alpha-dipalmitoylphosphatidylcholine (DPPC) at concentrations below the critical micellization concentration (cmc) of the detergents was studied by high-sensitivity DSC (hs-DSC), Fourier transform infrared spectroscopy (FT-IR) and freeze-fracture electron microscopy. The two phospholipids exhibited a striking different thermotropic behaviour in the presence of these detergents. For DPPC vesicles, the detergents were found to interact exclusively in the aqueous interface region of the bilayer below the membrane saturation concentration Rsat while in DMPC vesicles two coexisting interaction sites below this concentration persist. These are detergents which interact at the aqueous interface region (site 1) and in the acyl chain region (site 2) of the DMPC vesicles. The partition coefficients K of the detergents between DPPC vesicles and the water phase were calculated from the hs-DSC results at two detergent/phospholipid molar ratios Rtot less than or equal to Rsat as 0.35, 0.049 and 0.040 mol-1 for sodium deoxycholate, sodium cholate and octyl glucoside, respectively. In contrast, for DMPC the K values for Rtot less than or equal to Rsat were found to be dependent on Rtot due to the occupation of site 2 by the detergents above a certain Rtot. The model is discussed on the basis of the detergents free energies of transfer from the water phase to site 1 and site 2 of the vesicles, respectively. The solubilization behaviour of DPPC vesicles, dependent on whether the total detergent concentration is above or below the cmc at Rsat, differed significantly as revealed by hs-DSC. This suggests that in the latter case an additional hydrophobic effect could facilitate the formation of disc shaped mixed micelles. Moreover, this different behaviour was employed to measure the cmc values of the detergents studied in the presence of the vesicles by hs-DSC.  相似文献   

16.
The interaction of the bile salt cholate with unilamellar vesicles was studied. At low cholate content, equilibrium binding measurements with egg yolk lecithin membranes suggest that cholate binds to the outer vesicle leaflet. At increasing concentrations, further bile salt binding to the membrane is hampered. Before the onset of membrane solubilization, diphenylhexatriene fluorescence anisotropy decreases to a shallow minimum. It then increases to the initial value in the cholate concentration range of membrane solubilization. At still higher cholate concentrations, a drop in fluorescence anisotropy indicates the transformation of mixed disk micelles into spherical micelles. Perturbation of the vesicle membranes at molar ratios of bound cholate/lecithin exceeding 0.15 leads to a transient release of oligosaccharides from intravesicular space. The cholate concentrations required to induce the release depend on the size of the entrapped sugars. Cholesterol stabilizes the membrane, whereas, in spite of enhanced membrane order, sphingomyelin destabilizes the membrane against cholate. Freeze-fracture electron microscopy and phosphorus-31 nuclear magnetic resonance (31P NMR) also reflect a change in membrane structure at maximal cholate binding to the vesicles. In 31P NMR spectra, superimposed on the anisotropic line typically found in phospholipid bilayers, an isotropic peak was found. This signal is most probably due to the formation of smaller vesicles after addition of cholate. The results were discussed with respect to bile salt/membrane interactions in the liver cell. It is concluded that vesicular bile salt transport in the cytoplasm is unlikely and that cholate binding is restricted to the outer leaflet of the canalicular part of the plasma membrane.  相似文献   

17.
K Beyer  M Klingenberg 《Biochemistry》1978,17(8):1424-1431
The interaction of an amine oxide detergent with single bilayer lecithin vesicles was investigated with proton and phosphorus magnetic resonance. The addition of the detergent micelles to vesicles suspensions leads to rapid detergent incorporation into the vesicle bilayer, resulting in a heterogenous vesicle population. Initially, some vesicles take up the equivalent of one detergent micelle, whereas others contain no detergent. Subsequently, the detergent is distributed between the vesicles by vesicle-vesicle collisions. This can be followed by the change in the Pr3+-shifted spectral positions of the detergent and lecithin head groups with time. From the intensity of the head-group signals, it can be concluded that after about 20 h the detergent is almost equally distributed between the outer and inner vesicle membrane monolayers. Vesicles obtained by cosonication of the detergent and lecithin take up metal ions. This ion permeability depends on the vesicle concentration and can be attributed to vesicle-vesicle or vesicle-mixed micelle collisions. Egg lecithin vesicles are stable against the detergent up to molar ratios of detergent to lecithin of 0.2--0.3. At larger ratios mixed micells and multibilayers are formed. Measurements of proton spin-lattice relaxation times confirmed that the internal architecture of the vesicle bilayer is almost unaffected by the incorporated detergent.  相似文献   

18.
Magnetic realignment and rotational diffusion of cylindrical egg lecithin vesicles were measured under a phase contrast microscope. The anisotropy of magnetic susceptibility times membrane thickness was calculated from the data for several thin-walled vesicles. The resulting values were assigned to discrete numbers of bilayers. The difference between the susceptibilities parallel and perpendicular to the long axes of the lecithin molecules is deduced to be X parallel - X perpendicular = -(0.28 +/- 0.02) . 10(-8) cgs at 23 degrees C, if a bilayer thickness of 60 A is assumed.  相似文献   

19.
The ultrasonic velocity at 3 MHz and the density in the nonsonicated and sonicated liposomes of dipalmitoylphosphatidylcholine have been measured in the temperature range from 0 degrees C to 55 degrees C. The results indicate that nonsonicated multilamellar vesicles undergo a weak first order transition which is analogous to the nematic-isotropic transition of liquid crystals. A sharp change in the ultrasonic velocity associated with the first order transition disappears when the multilamellar vesicles are sonicated. The bulk modulus of the lipid bilayer calculated from the ultrasonic velocity and the density of sonicated liposomes has a value of 3.0 X 10(10) dyne/cm2 at 20 degrees C, reaches a minimum value of 2.1 X 10(10) dyne/cm2 at its transition temperature and increases slightly to 2.2 X 10(10) dyne/cm2 at 50 degrees C.  相似文献   

20.
Bacteriorhodopsin-F1·F0 (mitochondrial oligomycin-sensitive ATPase complex) proteoliposomes have poor proton pumping and photophosphorylation activities when reconstituted by cholate dialysis. A considerable proportion of the bacteriorhodopsin is not incorporated by cholate dialysis, the particles being too large to be combined into liposomes. Much better reconstitution is achieved where the purple membranes are first fragmented by sonication. Optimal incorporation occurs where bacteriorhodopsin and the phospholipids are sonicated together, suggesting that some perturbation of the liposomes is necessary for successful integration. Since F1·F0 is denatured by sonication a two-step reconstitution procedure has been developed wherein bacteriorhodopsin is first incorporated by sonication, then F1·F0 by cholate dialysis. The vesicles have high phosphorylation rates and also catalyze postillumination [32P]ATP formation where pyridine is present during first stage illumination.F1·F0 can also be incorporated into sonicated bacteriorhodopsin vesicles by “direct incorporation.” This depends on the presence of negatively charged amphiphiles such as cholate or phosphatidylserine in the membranes, and is stimulated by divalent metal cations. Optimum conditions for the various reconstitution procedures are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号