首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach to the analysis of mass spectrally assayed stable isotope-labeling experiments for studies of biosynthetic pathways is reported. This method determines in a mixture of product molecules, the relative number of product molecules synthesized from the stable labeled precursor pathway and those that were either present prior to the labeling period or were produced by an alternate pathway during the course of an experiment. In addition, the isotopic enrichment of the labeled atoms in the product molecules produced from the stable labeled precursor is determined. These isotopic enrichments represent the isotopic enrichment in the immediate precursors which form the product molecules and would reflect any cellular compartmentation of precursor pools. The feasibility of the method using 15NH4Cl and L-[5-15N]glutamine as precursors to study the de novo pyrimidine biosynthetic pathway in isolated rat hepatocytes is demonstrated. The results of these studies show that after incubation of rat hepatocytes with either precursor it is possible to determine the fraction of the uracil nucleotide pool that is formed by the de novo pathway during the period of exposure. The pattern of 15N labeling in the N1 and N3 positions in the uracil moiety is different for the two precursors; however, in most cases the 15N enrichment of each position remained relatively constant for each precursor with either time (15-120 min) or precursor concentration (1 to 10 mM). This method will allow the actual quantitation and isotopic enrichment of product formed by a specific biosynthetic pathway during the course of an experiment and, as such is an improvement over existing labeling techniques.  相似文献   

2.
Rat livers were perfused with [15N]glycine and unlabeled sodium benzoate by the single-pass technique via the portal vein or in retrograde fashion via the inferior vena cava. Perfusate [15N]hippurate enrichment was significantly greater than that of hepatic free glycine from 15 to 90 min, regardless of the direction of the perfusion. This result implies that differential labeling by periportal versus perivenous hepatocytes is not likely. When fasted animals were compared to those fed a chow diet or a sucrose-enriched diet, the labeling ratio of medium hippurate/hepatic free glycine decreased by only 9% in spite of a 5-fold decrease in the concentration of intrahepatic free glycine. Administration of nembutal to the intact animal significantly increased the enrichment of medium hippurate by 24% but did not affect the enrichment of the hepatic free glycine. We conclude that the difference between hippurate and free glycine enrichment is related to intracellular compartmentation of glycine transport. We suggest that measurement of the enrichment of hippurate after the administration of [15N]glycine with benzoate in intact animals or human subjects can therefore be used to estimate the enrichment of the intracellular precursor pool of glycine with a correction factor that does not vary appreciably under fed or fasted conditions. When uniformly labeled deuteroglycine was used as the tracer, enrichment of hepatic free glycine was decreased fivefold compared with [15N]glycine. Isotopic enrichments of apoBH and apoBL from the d less than 1.063 g/ml lipoprotein fraction isolated from the perfusion medium between 30 and 90 min averaged 3.7 and 4.1% excess, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In protein NMR experiments which employ nonnative labeling, incomplete enrichment is often associated with inhomogeneous line broadening due to the presence of multiple labeled species. We investigate the merits of fractional enrichment strategies using a monofluorinated phenylalanine species, where resolution is dramatically improved over that achieved by complete enrichment. In NMR studies of calmodulin, a 148 residue calcium binding protein, 19F and 1H-15N HSQC spectra reveal a significant extent of line broadening and the appearance of minor conformers in the presence of complete (>95%) 3-fluorophenylalanine labeling. The effects of varying levels of enrichment of 3-fluorophenylalanine (i.e. between 3 and >95%) were further studied by 19F and 1H-15N HSQC spectra,15N T1 and T2 relaxation measurements, 19F T2 relaxation, translational diffusion and heat denaturation experiments via circular dichroism. Our results show that while several properties, including translational diffusion and thermal stability show little variation between non-fluorinated and >95% 19F labeled samples, 19F and 1H-15N HSQC spectra show significant improvements in line widths and resolution at or below 76% enrichment. Moreover, high levels of fluorination (>80%) appear to increase protein disorder as evidenced by backbone 15N dynamics. In this study, reasonable signal to noise can be achieved between 60–76% 19F enrichment, without any detectable perturbations from labeling.  相似文献   

4.
Rat livers were perfused by the nonrecirculating technique with medium containing [15N]glycine and sodium benzoate. At various times, the isotopic enrichment of hepatic free glycine, hepatic glycyl-tRNA, and perfusate hippurate was measured by GLC-MS. After 60 min, these parameters had reached approximately maximal values. At 90 min, the perfusate hippurate had a 30% greater enrichment of 15N than the intracellular glycine or glycyl-tRNA. Hippurate enrichment was half that of the medium glycine. The rat livers secreted apolipoprotein B (B-100 plus B-48) at a rate of 22 micrograms/g per h. From the 15N enrichment and the secretion rate, an intrahepatic pool size of 86 micrograms/g of apoB was calculated. From the minimal intracellular transit time of 30 min, an apoB fractional synthetic rate (FSR) of 2 pools/h was indicated, whereas the FSR estimated from the 15N-enrichment was 0.26/h. A possible explanation for the discrepancy is that apoB may recycle within the hepatocyte. On the basis of the present experiments, when hippurate enrichment is used as a measure of the enrichment of intrahepatic glycine in in vivo studies with 15N-labeled glycine, a correction should be applied, under normal metabolic circumstances, of approximately 20-30%.  相似文献   

5.
R Nieto  F Cruz  J M Tejedor  G Barroso  S Cerdán 《Biochimie》1992,74(9-10):903-911
The sources of ammonia used by isolated, intact rat liver mitochondria in the production of citrulline have been investigated in situ using a novel methodology based on the analysis of 13C-15N heteronuclear couplings observed by 13C NMR. Isolated mitochondria from rat liver were incubated with ornithine, 13CO3H- and 15NH4Cl, using unlabeled glutamate or glutamine as alternative, intramitochondrial nitrogen donors. The production of (7-13C, 8-15N) or (7-13C, 8-14N) citrulline was determined in situ by 13C NMR and the relative proportions of 15N- and 14N-citrullines confirmed by high resolution 13C NMR analysis of the C-7 citrulline resonance observed in perchloric acid extracts prepared at the end of the incubations. The 15N fractional enrichment of the intramitochondrial NH3 pool was manipulated either by modifying the 15N enrichment of added 15NH4Cl, or by altering the concentration of the unlabeled nitrogen donors in the incubation medium. Fractional 15N enrichments measured in the N-8 nitrogen of the resulting (7-13C) citrulline closely paralleled those of the external 15NH4Cl with minor dilutions derived from the unlabeled nitrogen contribution from the alternative substrates. In the presence of 10 mM 15NH4Cl, 10 mM glutamate contributed 4% of the citrulline N-8 nitrogen. Under similar conditions, the contribution of nitrogen from 10 mM glutamine to N-8 citrulline was 6%. These results indicate that the primary source of ammonia used for citrulline synthesis by isolated, intact rat liver mitochondria is extramitochondrial, providing also an illustration of the use of 13C-15N spin coupling patterns observed by 13C NMR, as a new tool in the study of ammonia metabolism.  相似文献   

6.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

7.
A sheep was fed on15N-labelled ryegrass hay during a period of 9 days in order to obtain15N-labelled manure. After 9 days of feeding, the total N in faeces contained 3.70 atom %15N excess, which was equivalent to 82% of the15N enrichment of the hay N. The easily-decomposable fraction of the faecal N was less labelled (2.89 atom %15N excess) than the slowly-decomposable fraction. The15N enrichment of mineralized faecal N did not change significantly during 32 weeks of incubation in sand. About 25% of the faecal N was water-soluble. This N had a higher15N enrichment than the total faecal N, indicating that a part of the water-soluble N was indigestible feed N. The faeces contained only small amounts of NH 4 + -N, which had a15N enrichment similar to the15N enrichment of N mineralized during incubation in sand. It is suggested that the labelled faecal N obtained after a few days of feeding on labelled feed could be divided in two N pools: A decomposable N fraction (about 60%) with a15N enrichment similar to the enrichment of N mineralized in sand (2.89 ± 0.09 atom %15N excess), and a very slowly-decomposable N fraction (about 40%) with a15N enrichment similar to that of the feed (4.52 atom %15N excess).  相似文献   

8.
Jones  P.  Bachelard  H. S. 《Neurochemical research》1999,24(11):1327-1331
The transfer of label from 15N-alanine and 15N-glutamate into amino acids in incubated brain slices has been followed using gas chromatography/mass spectrometry (GC/MS). 15N from alanine appeared in both amino and amide groups of glutamine more rapidly than into aspartate, glutamate and GABA, which were all labeled at similar rates. Maximum labelling of approx. 50% enrichment of these three metabolites was achieved in 3 hr. The 15N present in doubly-labeled glutamine exceeded that in the singly-labelled after 30 min. 15N from glutamate was rapidly transferred to aspartate and to alanine, with slower incorporation into glutamine and GABA. As was seen with labeling from alanine, doubly-labeled glutamine was higher than the singly-labeled species, also reaching some 50% enrichment in 3 hr. Depolarisation with 40 mM extracellular K+ caused a considerable reversal of the ratio of doubly- to singly-labeled glutamine species from both alanine and glutamate. The results are discussed in terms of the effects of depolarization on the glutamate/glutamine cycle.  相似文献   

9.
In field studies of plant–insect herbivore interactions it is often difficult to establish which herbivore has fed on a particular plant. We investigated the suitability of three different 15N‐labeled nitrogen compounds (ammonium, nitrate, and glycine) for indirect marking of three grasshopper species [Omocestus viridulus (L.), Chorthippus parallelus (Zett.), and Chorthippus biguttulus (L.) (Orthoptera: Acrididae)] through labeling their food plants in the field. In two short‐term experiments grassland plots of 1 m2 were separately labeled with either one of the different nitrogen compounds. Grasshoppers were caged on three food‐plant species [Dactylis glomerata L., Holcus lanatus L. (Poaceae), and Trifolium repens L. (Fabaceae)] present in these plots for 72 h. Significantly enriched δ15N values in grasshoppers were found in all plant/grasshopper combinations. Enrichment in grasshoppers was positively correlated with the enrichment of plants and labeling with nitrate resulted in highest 15N enrichment. In a long‐term experiment, individuals of C. biguttulus were placed in a cage covering an area of 1 m2 for 37 days, with sampling of grasshoppers at regular intervals. δ15N values of the grasshopper and a common food plant, D. glomerata, increased steadily over time, up to 40‐fold by the end of the experiment. Our results demonstrate that 15N‐labeling of plants is an appropriate tool for the investigation of insect–plant interactions under natural conditions.  相似文献   

10.
Acute hyperammonemia was induced by 15NH4+ infusion in portacaval-shunted (PCS) and control rats to investigate its effects on cerebral metabolism of glutamine, glutamate and gamma-aminobutyrate. Cerebral 15N-metabolites were observed by 15N-NMR spectroscopy in the ex vivo brain, removed in toto at the end of infusion. Key 15N-metabolites in the brain and liver were quantitated and their specific activities measured by NMR and biochemical assays in perchloric acid extracts of the freeze-clamped organs. In the ex vivo brain, [gamma-15N]glutamine, present at tissue concentrations of 3-5 mumol/g with 15N enrichment of 36-48%, was observable within 6-13 min of data acquisition. [alpha-15N]glutamine/glutamate, each present at 0.5-1 mumol/g (approx. 10% enrichment), were observed in 27 min. The results demonstrate the feasibility of observing these cerebral metabolites by 15N-NMR within a physiological time scale. In a rat pretreated with glutamine synthetase inhibitor, L-methionine DL-sulfoximine, cerebral [15N]gamma-aminobutyrate was observed after 910 min. In PCS rats, decreased 15NH4+ removal in the liver was accompanied by formation of approx. 2-fold higher concentration of cerebral [gamma-15N]glutamine relative to that in weight-matched controls. The result suggests that increased diffusion of blood-borne 15NH3 into the brain led to increased [gamma-15N]glutamine synthesis in astrocytes as well as ammonia-mediated inhibition of glutaminase.  相似文献   

11.
Incubation of 3-day-old rat brain with L-[methyl-3H]methionine resulted in the rapid labeling of low-molecular-weight cytoplasmic RNA. Electrophoresis in 15% polyacrylamide gels provided evidence for the methylation of precursor tRNA molecules, and high-performance liquid chromatography demonstrated N2-methylguanine to be the predominant methylated base formed during the first 2 min of labelling.  相似文献   

12.
We measured the incorporation of recycled urea-nitrogen (N) by ruminal microbes, using five ruminally and duodenally fistulated steers (237 kg) fed low-quality grass hay (47 g crude protein/kg dry matter (DM)). Three received 1 kg/day of soybean meal (SBM) and two received no supplemental protein (control). The experiment was 15 days long. Background enrichments of 15N were measured on day 9 and continuous jugular infusion of 0.12 g/day [15N15N]urea began on day 10. Daily samples of urine, feces, ruminal bacteria and duodenal digesta from days 10 through 14 were used to determine plateaus in 15N enrichment. Duodenal and bacterial samples collected on day 15 were used to measure duodenal N flows. Bacterial N flow was calculated as duodenal N flow multiplied by duodenal 15N enrichment divided by bacterial 15N enrichment. Bacterial N from recycled urea-N was calculated as bacterial N flow multiplied by bacterial 15N enrichment divided by urinary urea 15N enrichment. Urinary enrichment of [15N15N]urea plateaued within 24 h, whereas 14N15N urea plateaued within 48 h of [15N15N]urea infusion. Bacteria reached a plateau in 15N enrichment within 24 h and duodenal samples within 48 h. Urea production was 17.6 g of urea-N/day for control and 78.0 g/day for SBM. Gut entry was 0.99 g of urea-N/g of urea-N produced for control and 0.87 g/g for SBM. Incorporation of recycled N into microbial N was 9.0 g of N/day for control and 23.0 g/day for SBM. Recycled urea-N accounted for 0.33 g of N/g of microbial N at the duodenum for control and 0.27 g/g for SBM. Our methods allowed measurement of incorporation of recycled urea-N into ruminal microbial N.  相似文献   

13.
Uniform double labeling of proteins for NMR studies can be prohibitively expensive, even with an efficient expression and purification scheme, due largely to the high cost of [13C6, 99%]glucose. We demonstrate here that uniformly (greater than 95%) 13C and 15N double-labeled proteins can be prepared for NMR structure/function studies by growing cells in defined media containing sodium [1,2-13C2, 99%]acetate as the sole carbon source and [15N, 99%]ammonium chloride as the sole nitrogen source. In addition, we demonstrate that this labeling scheme can be extended to include uniform carbon isotope labeling to any desired level (below 50%) by utilizing media containing equal amounts of sodium [1-13C, 99%]acetate and sodium [2-13C, 99%]acetate in conjunction with unlabeled sodium acetate. This technique is less labor intensive and more straightforward than labeling using isotope-enriched algal hydrolysates. These labeling schemes have been used to successfully prepare NMR quantities of isotopically enriched human carbonic anhydrase II. The activity and the 1H NMR spectra of the protein labeled by this technique are the same as those obtained from the protein produced from media containing labeled glucose; however, the cost of the sodium [1,2-13C2, 99%]acetate growth media is considerably less than the cost of the [13C6, 99%]glucose growth media. We report here the first published 13C and 15N NMR spectra of human carbonic anhydrase II as an important step leading to the assignment of this 29-kDa zinc metalloenzyme.  相似文献   

14.
An important goal for proteomic studies is the global comparison of proteomes from different genotypes, tissues, or physiological conditions. This has so far been mostly achieved by densitometric comparison of spot intensities after protein separation by 2-DE. However, the physicochemical properties of membrane proteins preclude the use of 2-DE. Here, we describe the use of in vivo labeling by the stable isotope 15N as an alternative approach for comparative membrane proteomic studies in plant cells. We confirm that 15N-metabolic labeling of proteins is possible and efficient in Arabidopsis suspension cells. Quantification of 14N versus 15N MS signals reflects the relative abundance of 14N and 15N proteins in the sample analyzed. We describe the use of 15N-metabolic labeling to perform a partial comparative analysis of Arabidopsis cells following cadmium exposure. By focusing our attention on plasma membrane proteins, we were able to confidently identify proteins showing up to 5-fold regulation compared to unexposed cells. This study provides a proof of principle that 15N-metabolic labeling is a useful technique for comparative membrane proteome studies.  相似文献   

15.
A gas chromatographic-mass spectrometric method for the determination of isotopic abundance in [6-15NH2]adenine nucleotides is described. The method involves formation of the di-t-butyldimethylsilyl (TBDMS) derivative of adenine following isolation of the nucleotide fraction with solid-phase ion-exchange chromatography and subsequent acid hydrolysis of nucleotides to free base. Mass spectra for both adenine-diTBDMS and [6-15NH2]adenine-diTBDMS were obtained to identify those ions containing the 6-NH2 moiety. The base peak (m/z 306) was formed by loss of C4H9 (57) and constitutes approximately one-third of the total ion current. Using selected ion monitoring of the m/z 306/m/z 307 ratio, levels of isotopic abundance of 1.0-50.0 mol% excess could be measured reproducibly with the injection of 10-20 pmol of the adenine-diTBDMS derivative obtained from isolated rat hepatocytes. Confirmation that measured isotopic abundance was referable to labeling of the 6-15NH2 group was obtained by oxidation of adenine to hypoxanthine and determination of enrichment in the hypoxanthine-diTBDMS derivative. The method was used to study the formation of [6-15NH2]adenine nucleotides during the incubation of isolated rat hepatocytes with [15N]alanine. A level of approximately 6.0 mol% excess was observed at 60 min incubation.  相似文献   

16.
A laboratory scale working model that could detect the 15N enrichment in cyanobacterial biomass and extracellular ammonia, using 15N gas under in vitro conditions was designed and fabricated. Using the model, 15N enrichment of 0.48% atom excess was detected in the cyanobacterial biomass on the 30 d after inoculation. The 15N enrichment increased linearly in the extracellular ammoniacal fraction from the 20 d onward. The model would prove to be a useful tool to quantify the extent of 15N enrichment under in vitro conditions using 15N gas.  相似文献   

17.
Huang SY  Tsai ML  Wu CJ  Hsu JL  Ho SH  Chen SH 《Proteomics》2006,6(6):1722-1734
Quantitative analysis of protein phosphorylation provides important insights into molecular signaling mechanisms and a better understanding of many cellular processes. In this study, we coupled stable isotope dimethyl labeling with immobilized metal affinity chromatography (IMAC) enrichment to quantify protein phosphorylation at MS-determined phosphorylation sites. The proposed method was first characterized using alpha- and beta-casein as two model phosphoproteins, and further applied to the analysis of pregnant rat uteri with and without treatment with 8-bromo-cGMP. Dimethyl labeling has several significant advantages: global, fast (within 5 min) and complete (near 100%). Our results indicate that the labeling has no adverse effect on the IMAC enrichment for tryptic peptides having single and multiple phosphorylation sites. Moreover, the enhanced a1 signal and the complete reaction by dimethyl labeling provide unequivocal identification of both the N-terminal amino acid and the number of the labeling site. Using these two criteria in data validation, which is particularly important for identifying phosphoproteins, we found that the confidence in interpreting dimethyl-labeled peptides had greatly increased. In the analysis of late gestation rat uteri, the abundance ratio between treated and un-treated phosphopeptide signals ranged from 0.51 to 1.69 with an average of around 1.01 +/- 0.25. The obtained ratio of the phosphorylation levels at Ser 15 of HSP27 was further confirmed by the consistent results obtained from Western blot analyses. Based on the analysis of the results, it is interesting to note that the activated cGMP dependent protein kinase G (PKG) seems to affect the phosphorylation of proteins associated with the inhibition of cell migration and proliferation, redistribution of actin-associated proteins, and the increase of protein synthesis in late-gestation uteri. These observations provide important evidence suggesting that activated PKG may play a critical role in the shift of pregnant uteri from proliferative to hypertrophic states.  相似文献   

18.
The temporal dynamics of N remobilization was studied in walnut (Juglans nigra x regia) trees growing in sand culture. Trees were fed with labeled N ((15)N) during 1999 and unlabeled N in 2000. Total N and (15)N contents in different tree compartments were measured during 80 d after bud burst and were used to estimate N remobilization for spring growth. The seasonal (and occasionally diurnal) dynamics of the concentration and (15)N enrichment of the major amino acids in xylem sap were determined concurrently. Sap flow velocity was also measured for sample trees. A new approach coupling amino acid concentrations to sap flow velocity for quantifying N remobilization was tested. A decrease of the labeled N contents of medium roots, tap roots, and trunk was observed concurrently to the increase in the labeled N content of new shoots. Remobilized N represented from previous year storage 54% of N recovered in new shoots. Arginine, citruline, gamma-amino butyric acid, glutamic acid, and aspartic acid always represented around 80% of total amino acid and amide N in xylem sap and exhibited specific seasonal trends and significant diurnal trends. N translocation was mainly insured by arginine during the first 15 d after bud burst, and then by glutamic acid and citruline. The pattern of N remobilization estimated by the new approach was consistent with that measured by the classical labeling technique. Implications for quantifying N remobilization for large, field-growing trees are discussed.  相似文献   

19.
Quantitative proteomics using stable isotope labeling strategies combined with MS is an important tool for biomarker discovery. Methods involving stable isotope metabolic labeling result in optimal quantitative accuracy, since they allow the immediate combination of two or more samples. Unfortunately, stable isotope incorporation rates in metabolic labeling experiments using mammalian organisms usually do not reach 100%. As a consequence, protein identifications in 15N database searches have poor success rates. We report on a strategy that significantly improves the number of 15N‐labeled protein identifications and results in a more comprehensive and accurate relative peptide quantification workflow.  相似文献   

20.
Chen CY  Cheng CH  Chen YC  Lee JC  Chou SH  Huang W  Chuang WJ 《Proteins》2006,62(1):279-287
We report the culture conditions for successful amino-acid-type selective (AATS) isotope labeling of protein expressed in Pichia pastoris (P. pastoris). Rhodostomin (Rho), a six disulfide-bonded protein expressed in P. pastoris with the correct fold, was used to optimize the culture conditions. The concentrations of [alpha-15N] selective amino acid, nonlabeled amino acids, and ammonium chloride, as well as induction time, were optimized to avoid scrambling and to increase the incorporation rate and protein yield. The optimized protocol was successfully applied to produce AATS isotope-labeled Rho. The labeling of [alpha-15N]Cys has a 50% incorporation rate, and all 12 cysteine resonances were observed in HSQC spectrum. The labeling of [alpha-15N]Leu, -Lys, and -Met amino acids has an incorporation rate greater than 65%, and the expected number of resonances in the HSQC spectra were observed. In contrast, the labeling of [alpha-15N]Asp and -Gly amino acids has a low incorporation rate and the scrambling problem. In addition, the culture condition was successfully applied to label dendroaspin (Den), a four disulfide-bonded protein expressed in P. pastoris. Therefore, the described condition should be generally applicable to other proteins produced in the P. pastoris expression system. This is the first report to present a protocol for AATS isotope labeling of protein expressed in P. pastoris for NMR study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号