首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endorgans of the inner ear of the gar were examined using transmission and scanning electron microscopy as well as nerve staining. The ultrastructure of the sensory hair cells and supporting cells of the gar ear are similar to cells in other bony fishes, whereas there are significant differences between the gar and other bony fishes in the orientations patterns of the sensory hair cells on the saccular and lagenar sensory epithelia. The saccular sensory epithelium has two regions, a main region and a secondary region ventral to the main region. The ciliary bundles on the main region are divided into two groups, one oriented dorsally and the other ventrally. Furthermore, as a result of curvature of the saccular sensory epithelium, the dorsal and ventral ciliary bundles on the rostral portion of the epithelium are rotated ninety degrees and are thus oriented on the animal's rostro-caudal axis. Hair cells on the secondary region are generally oriented ventrally. The lagenar epithelium has three groups of sensory hair cells. The groups on the rostral and caudal ends of the macula are oriented dorsally, whereas the middle group is oriented ventrally. Hair cell orientations on the utricular epithelium and macula neglecta are similar to those in other bony fishes. Nerve fiber diameters can be divided into three size classes, 1-8 microns, 9-13 microns, and 14 microns or more, with the smallest size class containing the majority of fibers. The distribution of the various classes of fiber diameters is not the same in nerve branches to each of the end organs. Similarly, the ratio of hair cells to axons differs in each end organ. The highest hair cell to axon ratio is in the utricle (23:1) and the smallest is in the macula neglecta (7:1). The number of sensory hair cells far exceed the number of eighth nerve axons in all sensory epithelia.  相似文献   

2.
Hyphessobrycon simulans has a Weberian apparatus for transmission of sound energy to the auditory organ, whereas Poecilia reticulata does not. The fine structure of the auditory organs is identical in the two species. The better hearing - expressed by large bandwidth and high sensitivity - typical of the Ostariophysi - seems to be based exclusively on the presence of the Weberian apparatus. The sensory epithelium of the saccule and the lagena is made up of hair (sensory) cells and supporting cells. The vertically orientated macula sacculi is divided into a dorsal and a ventral cell area with oppositely arranged hair-cell kinocilia. The sagitta takes up the center of the saccule and shows only three small sites with connections to the otolithic membrane. Remarkably, the dorsal sensory cells are connected to the ventral part of the otolith, but the ventral cells are connected to the dorsal part. The macula of the lagena also comprises a dorsal and a ventral cell area with oppositely arranged hair cells. The sensory cells in all maculae are of type II. They exhibit a striking apical cell protrusion, the cuticular villus. It is partially fused with the kinocilium in the contact zones and joined to the otolithic membrane. The cuticular villus probably stabilizes the long kinocilia.  相似文献   

3.
Auditory and vestibular functions of otolithic organs vary among vertebrate taxa. The saccule has been considered a major hearing organ in many fishes. However, little is known about the auditory role of the lagena in fishes. In this study we analyzed directional and frequency responses from single lagenar fibers of Dormitator latifrons to linear accelerations that simulate underwater acoustic particle motion. Characteristic frequencies of the lagenar fibers fell into two groups: 50 Hz and 80–125 Hz. We observed various temporal response patterns: strong phase-locking, double phase-locking, phase-locked bursting, and non-phase-locked bursting. Some bursting responses have not been previously observed in vertebrate otolithic nerve fibers. Lagenar fibers could respond to accelerations as small as 1.1 mm s–2. Like saccular fibers, lagenar fibers were directionally responsive and decreased directional selectivity with stimulus level. Best response axes of the lagenar fibers clustered around the lagenar longitudinal axis in the horizontal plane, but distributed in a diversity of axes in the mid-sagittal plane, which generally reflect morphological polarizations of hair cells in the lagena. We conclude that the lagena of D. latifrons plays a role in sound localization in elevation, particularly at high stimulus intensities where responses of most saccular fibers are saturated.Abbreviations BRA best response axis/axes - BS best sensitivity - CF characteristic frequency - CV coefficient of variation - DI directionality index - ISIH inter-spike interval histogram - PSTH peri-stimulus time histogram - SR spontaneous rate  相似文献   

4.
The inner ear of the skate, Raja ocellata, was examined by scanning electron microscopy. The otolithic membranes have a gelatinous component and an endogenous class of otoconia. Cupulae are reticulate in form. The morphology and polarization of sensory cell hair bundles are described for the various regions of the labyrinth, and are compared with published observations on other species. In the otolithic maculae, the more centrally located receptor cells generally have longer sterecolia than the peripheral cells. The hair bundles of the lacinia are similar to those of the central portion of the sacculus and differed from those of the rest of the utricular macula. Hair bundles in the peripheral regions of all maculae and cristae are similar. The polarization pattern of the utriculus is similar to that of teleosts, while that of the lagena is less clearly dichotomized. The receptor cells of most of the sacculus are oriented in a bivertical direction, with cells in the anterior portion, and a few in the posterior region, being aligned longitudinally. The significance of morphology and polarization with respect to the functions of the otolithic organs is discussed. The relationship of cell processes of the ampullary receptors to the cupula is briefly considered.  相似文献   

5.
6.
Analysis of the morphology of all three otolithic organs (sacculus, lagena and utriculus), including macula shape, hair cell morphology, density, orientation pattern, otolith morphology and the spatial relationships of the swimbladder and ear, reveals that butterflyfishes in the genera Chaetodon (which has anterior swimbladder horns) and Forcipiger (which lacks anterior swimbladder horns) both demonstrate the ear morphology typical of teleosts that lack otophysic connections, fishes that have traditionally been considered to be 'hearing generalists'.  相似文献   

7.
The relationship between the hair cell orientation pattern and innervation in the saccule and lagena of the teleost Helostoma temmincki (the kissing gourami) was investigated with scanning electron microscopy and the Winkelmann-Schmitt silver impregnation technique. The hair cell pattern in the saccule consists of four orthogonally oriented groups. The anterior two groups are oriented along the animal's rostrocaudal axis, and the posterior two are oriented along its dorsoventral axis. The pattern of hair cell orientations in the lagena is a typical bidirectional one. Two divisions of the eighth nerve innervate the saccule. The anterior division innervates the horizontally oriented hair cell groups, and the posterior division innervates the dorsoventrally oriented groups. A single nerve innervates the lagena, with the majority of fibers innervating one or the other of the two lagenar hair cell groups. The segregated pattern of innervation according to hair cell orientation groups in the saccule was confirmed in other species. Individual types of axonal terminations appear to innervate hair cells of specific ciliary bundle types.  相似文献   

8.
The lagena (the third otolith endorgan in vertebrates)   总被引:1,自引:1,他引:0  
In this review, the structure and functions of the lagena (the third otolith organ) in an evolutionary lineage of the vertebrates are described and discussed. The lagenar macula appears first in the posterior part of the sacculus of elasmobranchs; in these animals, the lagena is considered to be involved in the balance support (orientation with respect to the gravitation force). The lagena as a separate endorgan has been described in teleost fishes; in some species, the lagena is connected with the sacculus, while in other species the interrelations of these structures can be dissimilar. The lagena supplements the functions of the sacculus; in fishes (animals with no special organ of hearing), it is involved in discrimination of sound oscillations, identification of the gravitation vector, and orientation in the course of movements within the vertical plane. In amphibians, the lagena is localized in the posterior part of the sacculus, near the auditory structures; it performs mostly vestibular and (to a much lesser extent) auditory functions. In amniotes, the lagena was first separated from the sacculus; it is localized in the cochlear canal, distally with respect to the hearing organ. Information on the functions of the lagena in amniotes is rather limited and contradictory. Central projections of this organ have been examined practically only in birds. Lagenar afferents project to the vestibular nuclei and cerebellum, while some fibers come to the auditory nuclei of the medulla. The lagena in birds can be related to their navigation abilities (birds are supposed to be capable of orienting within the magnetic field of the Earth due to the magnetic properties of the lagenar otoconia; this structure can also provide detection of movements along the vertical axis. The close proximity between the otolithic and auditory endorgans in the cochlear canal of amniotes can be indicative of the functional significance of these interrelations. This aspect, however, remains at present undiscovered. In mammals (except Monotremata), there is no lagena as an independent endorgan. Neirofiziologiya/Neurophysiology, Vol. 40, No. 2, pp. 160–178, March–April, 2008.  相似文献   

9.
The gross development of the trout inner ear between embryonic and juvenile stages was studied by light microscopy. The otocyst has already formed in 3–4 mm embryos. The semicircular canals begin to separate from the utriculo-saccular cavity in 6 mm embryos, the anterior canal first, then the posterior and the horizontal canal later. The formation of the saccular cavity begins in 7 mm embryos, whereas that of the lagena occurs in 18 mm fry. The first macular primordia appear before the separation of cavities. The anterior and horizontal crests arise from the primordium of the utricular macula, and the posterior crest, macula lagena, and macula neglecta arise from that of the saccular macula. The macula lagena and macula neglecta appear later. The sensory areas of the labyrinth and the number of receptor cells grow continuously between the embryonic and juvenile stages. © 1993 Wiley-Liss, Inc.  相似文献   

10.
The stages of differentiation of the inner ear sensory epithelia of the neotenous cave urodele, Proteus anguinus, was studied with light and electron microscopy. Comparative ultrastructural analysis among specimens of different sizes confirms that new sensory cells may be generated throughout life, particularly along the periphery of the saccular macula. The inner ear of Proteus contains at least four types of sensory cells that differ in their apical ciliary part. The lungs and air-filled buccal cavity may function as transducers of sound pressure in underwater conditions. Sound waves might be transmitted from the buccal cavity to the connected oval window. The very complex orientation of the sensory hair cells of the saccular macula and the large overlying saccular otoconial mass suggest that this macula facilitates orientation of Proteus in its underground aqueous habitat.  相似文献   

11.
The tectorial structures of the inner ear of the proteid salamander Proteus anguinus were studied with transmission and scanning electron microscopy in order to analyze the ultrastructure of the otoconial membranes and otoconial masses of the maculae and the tectorial membrane of the papilla amphibiorum. Both otoconial and tectorial membranes consist of two parts: (1) a compact part and (2) a fibrillar part that joins the membrane with the sensory epithelium. Masses of otoconia occupy the lumina above these membranes. There are two types of calcium carbonate crystals in the otoconial masses within the inner ear of Proteus anguinus. The relatively small otoconial mass of the utricular macula occupies an area no greater than the diameter of the sensory epithelium, and it is composed of calcite crystals. On the other hand, the enormous otoconial masses of the saccular macula and the lagenar macula are composed of aragonite crystals. In the sacculus and lagena, globular structures 2–9 m?m in diameter were discovered on the lower surfaces of the otoconial masses above the sensory epithelia. These globules show a progression from smooth-surfaced, small globules to large globules with spongelike, rough surfaces. It is hypothesized that these globules are precursors of the aragonite crystals and that calcite crystals develop similarly in the utriculus. The presence of globular precursors in adult animals suggests that the formation of new crystals in the otoconial membranes of the sacculus and lagena of Proteus is a continuous, ongoing process.  相似文献   

12.
Deep-sea fishes have evolved in dark or dimly lit environments devoid of the visual cues available to shallow-water species. Because of the limited opportunity for visual scene analysis by deep-sea fishes, it is reasonable to hypothesize that the inner ears of at least some such species may have evolved structural adaptations to enhance hearing capabilities in lieu of vision. As an initial test of this hypothesis, scanning electron microscopy was used to examine the structure of the inner ears of four deep-sea elopomorph species inhabiting different depths: Synaphobranchus kaupii, Synaphobranchus bathybius, Polyacanthonotus challengeri, and Halosauropsis macrochir. The shape of the sensory epithelia and hair cell ciliary bundle orientation of the saccule, lagena, and utricle, the three otolithic organs associated with audition and vestibular function, are described. The saccules of all four species have a common, alternating ciliary bundle orientation pattern. In contrast, the lagena exhibits more interspecific diversity in shape and ciliary bundle orientation, suggesting that it has special adaptations in these species. The macula neglecta, a sensory epithelium of unknown function, is present in all four species.  相似文献   

13.
To clarify whether the unique postural control of the upside‐down swimming catfish (Synodontis nigriventris, family Mochokidae) is related to the histological characteristics of the otolith organs, we performed light microscopic observation of the utricle, the saccule and the lagena. The histological aspects of the otolith organs were compared between S. nigriventris and Synodontis multipunctatus, which belong to the same genus. S. multipunctatus usually shows upside‐up swimming posture except for feeding behaviour near water surface. As controls, we additionally used a miniature catfish, Corydoras paleatus and goldfish, Carassius auratus, which shows upside‐up swimming posture. We concluded that the structural aspects of the otolith organs did not cause the unique postural control of S. nigriventris. Light microscopic observation clarified the following aspects: (1) The utricle of S. nigriventris was located at the anterior region of the otocyst and under the semicircular canals, and the saccule and the lagena were located at the posteroventral region of the otocyst like those of S. multipunctatus and the other two fishes. (2) The hair cells of the utricle were arranged on the horizontal plane of the fishes with a variation in cell size at the ventral and ventrolateral sites in S. nigriventris, S. multipunctatus and the other two fishes. (3) The hair cells of the saccule and lagena of S. nigriventris, S. multipunctatus and C. auratus presented perpendicular to the horizontal plane of the fish. (4) Region‐specific differences in the size and shape of the hair cells of S. nigriventris were observed along the three‐dimensional axes of the otolith organs like those of S. multipunctatus and the other two fishes. It is unlikely that the unique postural control of upside‐down catfish is related to the localization of the utricle, the saccule and the lagena and the distribution of the different types of hair cell of the otolith organs. Furthermore, the distribution of the hair cells suggests that the otolith organs in S. nigriventris can detect three‐dimensional postural changes like the organs of other fishes showing generally observed upside‐up swimming posture.  相似文献   

14.
Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio) has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR) to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs) revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction), and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish.  相似文献   

15.
The polarisation of ciliary bundles on the macula of the saccule in the European bass (Dicentrarchus labrax L) has been studied using a scanning electron microscope (SEM). These data show that D. labrax possesses ciliary bundles arranged in four dichotomous quadrants with a standard orientation, comparable to hearing generalists from the order Perciformes. The spacing between ciliary bundles was investigated in three size classes of fish, with the results indicating that the addition of receptor cells in the ear of D. labrax continues for at least the first 2 years of development. The lengths of the kinocilia from ciliary bundles in each quadrant of the macula were also studied, and found to be of uniform length. In addition, we look at the internal structure of the afferent using transmission electron microscopy (TEM), revealing the nucleated cell body and peripheral nerve fibres of the saccule consistent with other TEM examinations of saccular ultrastructure. This information is required to gain an insight into the inner ear of D. labrax, as part of a larger study of the morphology and physiology of the hearing systems of both vertebrate and invertebrate marine animals.  相似文献   

16.
The macula sacculi and the macula lagenae of the herring, Clupea harengus L., were examined by light microscopy, the macula lagenae is large compared to what is normal among non-ostariophysan fishes, the morphological polarization of the hair cells in the inferior maculae shows a pattern which is similar to that usually seen in teleost fishes. The fibres in the nerves supplying the macula sacculi and the macula lagenae were counted and their diameters measured. The ramulus saccularis is divided in two separate ramuli innervating populations of hair cells with different morphological polarization. The saccular rostral nerve trunk contains 1800–2300 fibres, with 1300–1800 fibres in the caudal nerve trunk. The lagenar nerve is composed of 2100–4000 fibres. The fibre diameters are 1–14 μm in all ramuli. Silver staining of the nerve axoplasm reveals a unique differentiation of the maculae, which can be divided into a central area surrounded by a peripheral part. The hair cells in the central area are innervated by thick nerve fibres (5–14 μm diameter) as well as a few thin nerve fibres (about 1 μm diameter), while the receptor cells in the peripheral area are exclusively innervated by thin fibres having diameters of 2 μm or less.  相似文献   

17.
Immunological techniques have been used to generate both polyclonal and monoclonal antibodies specific for the apical ends of sensory hair cells in the avian inner ear. The hair cell antigen recognized by these antibodies is soluble in nonionic detergent, behaves on sucrose gradients primarily as a 16S particle, and, after immunoprecipitation, migrates as a polypeptide with a relative molecular mass of 275 kD on 5% SDS gels under reducing conditions. The antigen can be detected with scanning immunoelectron microscopy on the apical surface of the cell and on the stereocilia bundle but not on the kinocilium. Double label studies indicate that the entire stereocilia bundle is stained in the lagena macula (a vestibular organ), whereas in the basilar papilla (an auditory organ) only the proximal region of the stereocilia bundle nearest to the apical surface is stained. The monoclonal anti-hair cell antibodies do not stain brain, tongue, lung, liver, heart, crop, gizzard, small intestine, skeletal muscle, feather, skin, or eye tissues but do specifically stain renal corpuscles in the kidney. Experiments using organotypic cultures of the embryonic lagena macula indicate that the antibodies cause a significant increase in the steady-state stiffness of the stereocilia bundle but do not inhibit mechanotransduction. The antibodies should provide a suitable marker and/or tool for the purification of the apical sensory membrane of the hair cell.  相似文献   

18.
The secretory cells and ionocytes of the saccular epithelium of the inner ear of trout (Oncorhynchus mykiss) and turbot (Psetta maxima) have been studied by electron microscopy. In these species, the saccular epithelium may be subdivided into four zones: the “macula”, the “meshwork area”, the “patches area”, and the “intermediate area”. In addition to the sensory “hair cells” and their supporting cells, the macula contains, at its periphery, “granular cells” that have the ultrastructural characteristics of secretory cells. The “meshwork area” around the macula contains large ionocytes endowed with pseudopods, many mitochondria, and three intracytoplasmic membrane systems (endoplasmic reticulum, tubular, and vesicular systems). The patches area, located at some distance from the macula, consists of groups of small mitochondria-rich ionocytes characterized by infoldings of their lateral plasma membrane. In the intermediate area, the size and organelle-content of cells decrease from the meshwork area to the patches area. There is no significant difference in cell composition or structure of the saccular epithelium between the trout and the turbot. The secreting cells might be involved in secretion of endolymph and formation of the otolith, whereas the ionocytes probably regulate the ionic composition of the endolymph.  相似文献   

19.
The small number of hair cells in auditory and vestibular organs severely impedes the biochemical characterization of the proteins involved in mechano-electrical transduction. By developing an efficient and clean "twist-off" method of hair bundle isolation, and by devising a sensitive, nonradioactive method to detect minute quantities of protein, we have partially overcome this limitation and have extensively classified the proteins of the bundles. To isolate hair bundles, we glue the saccular macula of the bullfrog to a glass coverslip, expose the tissue to a molten agarose solution, and allow the agarose to solidify to a firm gel. By rotating the gel disk with respect to the fixed macula, we isolate the hair bundles by shearing them at their mechanically weak bases. The plasma membranes of at least 80% of the stereocilia reseal. To visualize the proteins of the hair bundle, we covalently label them with biotin, separate them by SDS-PAGE, and transfer them to a charged nylon membrane. We can detect less than 500 fg of protein by probing the membrane with streptavidin-alkaline phosphatase and detecting the chemiluminescent product from the hydrolysis of the substrate 3-(4-methoxyspiro-(1,2-dioxetane-3,2'-tricyclo-[3.3.1. 1(3.7)]decan)-4-yl) phenyl phosphate (AMPPD). These techniques reveal a distinct constellation of proteins in and associated with hair bundles. Several proteins, such as calmodulin, calbindin, actin, tubulin, and fimbrin, have previously been described. A second class of proteins in the preparation appears to be derived from extracellular sources. Finally, several heretofore undescribed bundle proteins are identified and characterized by their membrane topology, subcellular localization, and glycosidase and protease sensitivities.  相似文献   

20.
The development of the saccule of the inner ear in the toadfish was studied using light and scanning electron microscopy. Development was studied from the early embryo (2-3 days postfertilization), when the otocyst first forms, to the early-aged juvenile when the development of the inner ear approximates that of the adult (4 weeks postfertilization). The ultrastructural features examined included the morphological sequence of ciliary bundle growth, the development of orientation patterns of the ciliary bundles, and the relation of the ultrastructural development to overall gross development. Gross development may be divided into four distinct morphological stages. Stage I encompasses the time from initial formation of the otocyst until the start of stage II, which is the stage when the pars inferior begins migrating ventrally. In stage III the pars inferior continues to elongate ventrally. Stage IV starts when the pars inferior elongates in a rostral and caudal direction. The ear attains its adult shape in stage IV. The differentiation of the sensory cells begins during stage I. During the early part of stage I, a small cilium is found on the apical surface of each cell throughout the otocyst. In the middle and late periods of stage I, a few microvillous buds add to the surface of the cells that already have a kinocilium. These early ciliary bundles are clustered on the rostral-ventral and caudal walls of the otocyst. There is no clear patterning to the orientation of these ciliary bundles. In stage II the ventral stretching of the labyrinth wall causes a spreading of the clustered bundles along the ventral and medial walls of the pars inferior. The orientation of the ciliary bundles has no distinct pattern. In stage III the orientations of the ciliary bundles appear adultlike, although there are so few ciliary bundles that it is difficult to make a definite determination. During stage IV, hair cells with an adultlike horizontal and vertical orientation pattern are found on the rostral and caudal sections of the saccular macula, respectively. The transition region lying between these areas has ciliary bundles with various orientations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号